Math, asked by ritikapatna1234, 6 months ago

if alpha and beta are the zeros of the quadratic polynomial x square - 6 X + a find the valve of a.if 3A+2B = 20​

Answers

Answered by mathdude500
6

Appropriate Question :-

\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \:  {x}^{2} - 6x + a, \: find \: a \: if \: 3 \alpha  + 2 \beta  = 20

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \:  {x}^{2} - 6x + a

We know,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{a}{1}  = a -  -  - (1)

and

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha +   \beta  =  - \dfrac{( - 6)}{1}  = 6 -  -  - (2)

Also, it is given that

\rm :\longmapsto\:3 \alpha  + 2 \beta  = 20 -  -  - (3)

Now, from equation (2) we have

\rm :\longmapsto\: \alpha  +  \beta  = 6

So, on multiply by 2, we get

\rm :\longmapsto\: 2\alpha  +  2\beta  = 12 -  - -  (4)

Now, Subtracting equation (4) from equation (3), we get

\rm :\implies\: \alpha  = 8

On substituting this value in equation (2), we get

\rm :\longmapsto\:8 +  \beta  = 6

\rm :\longmapsto\:\beta  = 6 - 8

\rm :\longmapsto\:\beta  =  - 2

Hence, we get

\rm :\longmapsto\: \alpha  = 8

and

\rm :\longmapsto\:\beta  =  - 2

So, substituting these values in equation (1), we get

\rm :\longmapsto\:a = 8( - 2)

\bf\implies \:a \:  =  \:  -  \: 16

Additional Information :-

\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \:  {ax}^{3} + b{x}^{2} + cx + d \: then

\purple{ \boxed{ \bf{ \alpha  +  \beta  +  \gamma  =  -  \: \dfrac{b}{a} }}}

\purple{ \boxed{ \bf{ \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \: \dfrac{c}{a} }}}

\purple{ \boxed{ \bf{ \alpha \beta \gamma  =  -  \: \dfrac{d}{a} }}}

Similar questions