Math, asked by keshavsingh64, 7 months ago

if alpha and beta are the zeros of the quadratic polynomial PX equal to X square + bx + c then find the value of1/alpha ²+1/beta²​

Answers

Answered by ayansalmani991
0

Step-by-step explanation:

If α,β are roots of equation ax

2

+bx+c=0 then α+β=

a

−b

&αβ=

a

c

i) (1+α)(1+β)

=1+α+β+αβ

=1+(

a

−b

)+

a

c

=1+(

a

c−b

)

ii) α

3

β+αβ

3

αβ(α

2

2

)

a

c

(

a

2

b

2

a

2c

)

a

3

c

(b

2

−2ac)

α+β=−

a

b

(α+β)

2

=b

2

/a

2

α

2

2

+2αβ=b

2

/a

2

α

2

2

=

a

2

b

2

a

2c

iii)

α

1

+

β

1

αβ

β

+

αβ

α

=

αβ

β+α

=

a

−b

×

c

a

=

c

−b

iv)

aα+b

1

+

aβ+b

1

α+β=

a

−b

=

aα−a(α+β)

1

+

aβ−a(α+β)

1

⇒b=−a(α+β)

=

aα−aα−aβ

1

+

aβ−aα−aβ

1

=−

a

1

(

α

1

+

β

1

)=

a

−1

(

c

−b

)=

ac

b

Mark answer as brain list

follow me

Answered by alishajaffery188
0

Answer:

α,β are roots of equation ax

2+bx+c=0 then α+β= a−b &αβ=ac

i) (1+α)(1+β)

=1+α+β+αβ

=1+( a−b )+ ac

=1+( ac−b )

ii) α 2 β+αβ 3αβ(α 2 +β 2 )a c ( a 2b 2 − a2c )a 3c (b 2 −2ac)α+β=− ab

(α+β) 2 =b 2 /a

2α 2 +β 2 +2αβ=b 2/a 2α 2 +β 2 =a 2b 2 − a2c

iii)

α1 +β 1αβ + αβ α =αβ β+α= a−b × ca= c−b

iv) aα+b1 + aβ+b1α+β= a−b=

aα−a(α+β)1 + aβ−a(α+β)1

⇒b=−a(α+β)= aα−aα−aβ1 + aβ−aα−aβ1=− a1 ( a1 + β-1 )= a−1 ( c−b )= acb

Similar questions