Math, asked by devendrayadu196, 1 year ago

If alpha and beta are the zeros of the quadratic polynomial f(x) =kx^2+4x+4 such that Alpha square plus beta square is equals to 24, find the value of k give your answer correctly otherwise the answer will be reported

Answers

Answered by awesomeradhi07
57
This is the answer I guess!!!!
Attachments:

devendrayadu196: This answers absolutely correct thanks
devendrayadu196: I will mark you as a brainliest
Answered by mysticd
20

Answer:

 k=-1\:Or\:k=\frac{2}{3}

Step-by-step explanation:

Given \: \alpha\:and\:\beta\\are \:zeros \:of\:the\\quadratic \: polynomial \\f(x)=kx^{2}+4x+4\:such \:that\\\alpha^{2}+\beta^{2}=24--(1)

 Compare \: this \: with \\ax^{2}+bx+c ,\:we \:get

Sum\:of\:the\: zeroes\\=\frac{-b}{a}

\implies \alpha+\beta=\frac{-4}{k}---(2)

 Product\:of \:the\: zeroes\\=\frac{c}{a}

\implies \alpha\beta=\frac{4}{k}--(3)

\alpha^{2}+\beta^{2}=24--(1)

\implies \left(\alpha+\beta\right)^{2}-2\alpha\beta=24

\implies \left(\frac{-4}{k}\right)^{2}-2\times \frac{4}{k}=24\:[from \:(2) \:and\:(3)]

\implies \frac{16}{k^{2}}-\frac{8}{k}=24

\implies \frac{16-8k}{k^{2}}=24

\implies 16-8k=24k^{2}

/* Divide each term by 8, we get

\implies 2-k=3k^{2}

\implies 3k^{2}+k-2=0

/* Splitting the middle term,we get

\implies 3k^{2}+3k-2k-2=0

\implies 3k(k+1)-2(k+1)=0

\implies (k+1)(3k-2)=0

\implies k+1=0\:Or\:3k-2=0

\implies k=-1\:Or\:3k=2

\implies k=-1\:Or\:k=\frac{2}{3}

Therefore,

 k=-1\:Or\:k=\frac{2}{3}

•••♪

Similar questions