If alpha and beta are the zeros of the quadratic polynomial f(x) = kx^2+4x+4 such that a^2 + beta^2 =24, find the values of k
Answers
Answered by
11
F(x). = kx2 + 4x. +4
Let alpha =A and beta =B
We know that
A + B = -b/a
A + B = -4/k
And
AB = c/a
AB = 4/k
Now it is given that
A2 + B2 =. 24
(A+B)2 - 2AB = 24
(-4/k)2 - 2*4/k = 24
16/k2 - 8/k = 24
16 - 8k/k2 = 24
16 - 8k = 24k2
24k2 +8k -16 =0
8(3k2 +k -2) =0
3k2 + k -2 =0
3k2 + 3k -2k -2 =0
3k (k +1 ) -2(k +1)=0
(3k -2)(k+1) =0
k = 2/3 and k = -1
Let alpha =A and beta =B
We know that
A + B = -b/a
A + B = -4/k
And
AB = c/a
AB = 4/k
Now it is given that
A2 + B2 =. 24
(A+B)2 - 2AB = 24
(-4/k)2 - 2*4/k = 24
16/k2 - 8/k = 24
16 - 8k/k2 = 24
16 - 8k = 24k2
24k2 +8k -16 =0
8(3k2 +k -2) =0
3k2 + k -2 =0
3k2 + 3k -2k -2 =0
3k (k +1 ) -2(k +1)=0
(3k -2)(k+1) =0
k = 2/3 and k = -1
Similar questions