if alpha and beta are the zeros of the quadratic polynomial f(x)=x^2-p(x+1)-c,show that (alpha +1) (beta+1)=1-c
Answers
Answered by
4
f(x) = x² - p x + q
α and β are the roots of the above equation.
to find α² / β² + β² / α² = ?
α = [ p + √(p² - 4q) ] / 2 and β = [ p - √(p² - 4 q) ] / 2
so, α + β = p and α β = q and α² β² = q²
=> α² + β² = (α+β)² - 2 αβ = p² - 2 q
=> α⁴ + β⁴ = (α² + β²)² - 2 α²β² = (p² - 2q)² - 2 q²
= p⁴ - 4 p² q + 4 q² - 2 q²
= p⁴ - 4 p² q + 2 q²
NOW , α² / β² + β² / α² = [ α⁴ + β⁴ ] / α² β² =
= [ p⁴ - 4 p² q + 2 q² ] / q²
Similar questions