Math, asked by Alexa365, 3 months ago


If alpha and Beta are the zeros of the quadratic polynomial f(x)= x2 - 5x + k such that alpha - Beta= 1, find the value of k.​

Answers

Answered by mathdude500
5

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{ \alpha \: and \:   \beta  \: are \: zeroes \: of \: f(x)) =  {x}^{2} - 5x + k } \\ &\sf{such \: that}\\ &\sf{ \alpha -   \beta = 1 } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\: find - \begin{cases} &\sf{value \: of \: k}  \end{cases}\end{gathered}\end{gathered}

\large\underline{\bold{Solution :-  }}

Now,

Let us consider a quadratic polynomial f(x) = ax² + bx + c having zeroes α and β, then

\boxed{{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

OR

\boxed{{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

And

\boxed{{\tt Product\ of\ the\ zeroes=\frac{c}{a}}}

OR

\boxed{{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

CALCULATION :-

  • The given quadratic polynomial is p(x) = x² - 5x + k

On comparing with

  • quadratic polynomial ax² + bx + c,

we get

  • a = 1

  • b = - 5

  • c = k

 \rm\rightarrow \alpha + \beta = \dfrac{-b}{a} =  - \dfrac{( - 5)}{1}  = 5

 \rm \: \rightarrow \alpha \beta = \dfrac{c}{a} \:  = \dfrac{k}{1}  = k

Now,

\large \underline{\tt \:{ According  \: to  \: statement }}

\rm :\longmapsto\: \alpha -   \beta  = 1

\rm :\longmapsto\: {( \alpha  -  \beta )}^{2}  = 1

\rm :\longmapsto\: {( \alpha +   \beta) }^{2}   - 4 \alpha  \beta  =  1

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \{\because \:  {(x - y)}^{2}  =  {(x + y)}^{2}   -  4xy \}

\rm :\longmapsto\: {5}^{2}  - 4k = 1

\rm :\longmapsto\:25 - 4k = 1

\rm :\longmapsto\:4k = 24

\rm :\longmapsto\:k = 6

Additional Information :-

 \boxed{ \bf \:  { \alpha }^{2} +  { \beta }^{2}   =  {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta  }

 \boxed{ \bf { \alpha }^{3}  +  { \beta }^{3}  =  {( \alpha  +  \beta )}^{3} - 3 \alpha  \beta ( \alpha  +  \beta ) }

 \boxed{ \bf \:  {( \alpha  -  \beta )}^{2} =  {( \alpha  +  \beta )}^{2} - 4 \alpha  \beta}

Similar questions