if alpha and beta are the zeros of the quadratic polynomial 5 x square + 2 x minus 1 then write the values of alpha + beta
Answers
Answered by
10
Given,
Quadratic Polynomial = 5x² + 2x - 1.
Zeroes are α and ß.
As α and ß are its zeroes, so
⇒ 5x² + 2x - 1 = k ( x - α ) ( x - ß )
Where k is constant.
⇒ 5x² + 2x - 1 = k ( x² - xß - xα + αß )
⇒ 5x² + 2x - 1 = k { x² - x( α + ß ) + αß }
⇒ 5x² + 2x - 1 = kx² - kx( α + ß ) + kαß
By comparing coefficients ,
⇒ 5x² = kx²
⇒ k = 5x² / x²
∴ k = 5.
And,
⇒ 2x = -kx ( α + ß )
⇒ -k ( α + ß ) = 2x / x
⇒ -k ( α + ß ) = 2
By putting the value of k = 5,
⇒ -5 ( α + ß ) = 2
⇒ ( α + ß ) = 2/ ( -5 )
∴ ( α + ß ) = -2/5.
Hope it helps !
Quadratic Polynomial = 5x² + 2x - 1.
Zeroes are α and ß.
As α and ß are its zeroes, so
⇒ 5x² + 2x - 1 = k ( x - α ) ( x - ß )
Where k is constant.
⇒ 5x² + 2x - 1 = k ( x² - xß - xα + αß )
⇒ 5x² + 2x - 1 = k { x² - x( α + ß ) + αß }
⇒ 5x² + 2x - 1 = kx² - kx( α + ß ) + kαß
By comparing coefficients ,
⇒ 5x² = kx²
⇒ k = 5x² / x²
∴ k = 5.
And,
⇒ 2x = -kx ( α + ß )
⇒ -k ( α + ß ) = 2x / x
⇒ -k ( α + ß ) = 2
By putting the value of k = 5,
⇒ -5 ( α + ß ) = 2
⇒ ( α + ß ) = 2/ ( -5 )
∴ ( α + ß ) = -2/5.
Hope it helps !
Similar questions