Math, asked by ishakaur485, 2 months ago

If alpha and beta are the zeros of the quadratic polynomial PX equal to 4 x square - 5 x minus 1 find the value of Alpha square plus Alpha into beta square

Answers

Answered by VεnusVεronίcα
89

\large \pmb{\mathfrak{\red{Appropriate~question...}}}

If \alpha and \beta are the zeroes of the polynomial P(x)=4x^2-5x-1, then find the value of  \alpha^2\beta+\alpha\beta^2.

 \\

\large \pmb{\mathfrak{\red{Given...}}}

Given an equation  P(x)=4x^2-5x-1 whose zeroes are \alpha and \beta.

 \\

\large \pmb{\mathfrak{\red{To~find...}}}

We have to find the value of  \alpha^2\beta+\alpha{\beta}^2.

 \\

\large \pmb{\mathfrak{\red{Solution...}}}

Firstly, we know that \alpha^2\beta+\alpha\beta^2 can be also written as \alpha \beta(\alpha+\beta).

Now, we'll find the sum and product of the zeroes :

\red{\pmb{\mathfrak {Product~ of ~zeroes=\dfrac{c}{a}}}}

:\implies\alpha+\beta= \dfrac{-1}{4}

\red{\pmb{\mathfrak{ Sum~of ~zeroes=\dfrac{-b}{a}}}}

:\implies \alpha\beta=\dfrac{-(-5)}{4}

:\implies \alpha\beta=\dfrac{5}{4}

Now, we'll substitute the sum and product in \alpha\beta(\alpha+\beta) :

:\implies \dfrac{-1}{4}(\dfrac{5}{4})

:\implies \dfrac{-5}{16}

 \\

\red{\pmb{\mathfrak{ Henceforth,~\alpha^2\beta+\alpha\beta^2=\dfrac{-5}{16}}}}

Similar questions