Math, asked by turnajaspinder3414, 2 months ago

If alpha and beta are the zeros of the quadratic polynomial p(x)=x^2+12x+35,form a quadratic polynomial whose zeros are 2alpha,2beta

Attachments:

Answers

Answered by ScarlIet
6

Given that, α and β are the zeros of the quadratic polynomial p(x) = x² + 12x + 35.

We've to form a Quadratic Polynomial whose Zeroes are and 2β.

━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

\bigstar\:{\underline{\pmb{\sf{\purple{Given\:Polynomial\::\:}x^2 + 12x + 35}}}}

Here,

  • a = 1 ; b = 12 and c = 35

⠀⠀⠀

As we know that,

⠀⠀⠀

 \qquad\bf{\dag} \: {\underline{\pmb{\sf{Sum \: of  \: Zeroes =  \red{- b/a}}}}}\\\\\\ \qquad\dashrightarrow\sf \alpha + \beta = \dfrac{-12}{1}\\\\\\ \qquad\dashrightarrow{\underline{\boxed{\frak{ \pmb{\alpha + \beta = \purple{- 12}}}}}}\\\\

 \qquad\bf{\dag} \: {\underline{\pmb{\sf{Product \: of  \: Zeroes =  \red{c/a}}}}}\\\\\\ \qquad\dashrightarrow\sf \alpha  \beta = \dfrac{35}{1}\\\\\\ \qquad\dashrightarrow{\underline{\boxed{\frak{ \pmb{\alpha \beta = \purple{35}}}}}}\\\\

☆ Now, Let's find the sum and product of Zeroes of new Quadratic Polynomial :

⠀⠀⠀

\qquad\bf{\dag} \:  \: {\underline{\pmb{\sf{Sum \: of  \: Zeroes =  \red{2 \alpha  + 2 \beta }}}}}\\\\\\\qquad \dashrightarrow\sf  2(\alpha + \beta)\\\\\\ \qquad\dashrightarrow\sf  2( - 12)\\\\\\ \qquad\dashrightarrow{\boxed{\boxed{\frak{ \pmb{\blue{\quad - 24\quad}}}}}}\\\\\\

 \qquad\bf{\dag} \:  \: {\underline{\pmb{\sf{Product \: of  \: Zeroes =  \red{2 \alpha  \times 2 \beta }}}}}\\\\\\ \qquad\dashrightarrow\sf  2(\alpha \times \beta)\\\\\\ \qquad\dashrightarrow\sf  2( 35)\\\\\\ \qquad\dashrightarrow{\boxed{\boxed{\frak{ \pmb{ \blue{\quad70\quad}}}}}}\\\\

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

☆ Now, By using Sum and Product of Zeroes Let's find out New required Quadratic Polynomial by using Formula :

⠀⠀⠀

\maltese \: { \underline{\boxed{\sf{p(x) = x^2 - \bigg(\blue{Sum\:of\:Zeroes} \bigg)x + \blue{Product\:of\:zeroes}}}}}\\\\\\ \dashrightarrow\sf p(x) = x^2 - (- 24)x + 70\\\\\\ \dashrightarrow{\underline{\boxed{\frak{ \pmb{\pink{p(x) = x^2 + 24x + 70}}}}}} \:\bigstar\\\\

\therefore\:{\underline{\sf{Hence,\:the\:required\:Quadratic\:Polynomial\:is\: \pmb{x^2 + 24x + 70}.}}}

Similar questions