Math, asked by Mohityadav111, 1 year ago

if alpha and beta are the zeros of the quadratic polynomial f of x is equal to x squared minus x minus 4 find the value of one by Alpha Plus One by beta minus alpha beta

Attachments:

Answers

Answered by vidya854
515
Hey mate

Here is ur answer,

f(x) =  {x}^{2}  - x - 4
Roots of the quadratic equation is alpha and beta.

Sum of the roots:

 =  >  \:  \alpha  +  \beta  =  \frac{ - b}{a}
 =  >  \:  \frac{ - ( - 1)}{1}

=> 1.

Product of zeroes:

 =  >  \:  \alpha  \beta  =  \frac{c}{a}

=> -4/1

=> -4.

From the question,

 =  >  \:  \frac{1}{ \alpha }   +  \frac{1}{ \beta }  -  \alpha  \beta

 =  >  \:  \frac{ \alpha  +  \beta }{ \alpha  \beta }  -  \alpha  \beta

 =  >  \:  \frac{1}{ - 4}  - ( - 4)

 =  >  \:  \frac{ - 1}{4}  + 4


 =  >  \:  \frac{15}{4}

:-)Hope it helps u. 《《 VIDYA》》》
Answered by hukam0685
1

The value is \bf \frac{1}{ \alpha } +  \frac{1}{ \beta }   -  \alpha  \beta  =  \frac{ 15}{4}  \\ .

Given:

  • A quadratic polynomial.
  • f(x)= {x}^{2}  - x - 4 \\

To find:

  • Find the value of  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  -  \alpha  \beta  \\

Solution:

A standard quadratic polynomial \bf f(x) = a {x}^{2}  + bx + c, a≠0, have two zeros

l \alpha  \: and \:  \beta

then

 \alpha +   \beta  =  \frac{ - b}{a}  \\

and

 \alpha  \beta  =  \frac{c}{a}  \\

Step 1:

Find the value of  \alpha +   \beta  \: and \:  \alpha  \beta  \\

From the above written relationship of zeros and coefficients of expression.

 \alpha  +  \beta  =  -  \frac{ - 1}{1}

\alpha  +  \beta = 1 \:  \:  \: ...eq1

and

 \alpha  \beta  =   \frac{ - 4}{1}  \\

 \alpha  \beta  =  - 4 \:  \: ...eq2 \\

Step 2:

Find the value of  \frac{1}{ \alpha } +  \frac{1}{ \beta }   \\

we can manipulate the expression,

As shown

 \frac{1}{ \alpha } +  \frac{1}{ \beta }   =  \frac{ \alpha  +  \beta }{ \alpha  \beta }  \\

put the values from eq1 and eq2

 \frac{1}{ \alpha } +  \frac{1}{ \beta }   =  \frac{ - 1}{4}  \:  \: ...eq3 \\

Step 3:

Find the value of expression.

Put the values from eq3 and eq2.

 \frac{1}{ \alpha } +  \frac{1}{ \beta }   -  \alpha  \beta  =  \frac{ - 1}{4}  - ( - 4) \\

\frac{1}{ \alpha } +  \frac{1}{ \beta }   -  \alpha  \beta  =  \frac{ - 1}{4}   + 4 \\

\frac{1}{ \alpha } +  \frac{1}{ \beta }   -  \alpha  \beta  =  \frac{ - 1 + 16}{4}  \\

\frac{1}{ \alpha } +  \frac{1}{ \beta }   -  \alpha  \beta  =  \frac{ 15}{4} \\

Thus,

The value is

\bf \frac{1}{ \alpha } +  \frac{1}{ \beta }   -  \alpha  \beta  =  \frac{ 15}{4}  \\

Learn more:

1) 3s²-6s+4 find the value of alpha / beta + beta / alpha +2 ( 1/alpha + 1/ beta)+ 3alpha beta

https://brainly.in/question/2749822

2)If alpha and beta are the root of quadratic equation 2 x square minus x minus 1 is equal to zero find alpha and beta

https://brainly.in/question/7842773

#SPJ3

Similar questions