Math, asked by Ajeshkm9886, 1 year ago

If alpha and beta are the zeros of the quadratic polynomial 3x^2-4x-7, find a quadratic polynomial whose zeros are 1/alpha and 1/beta

Answers

Answered by amitnrw
5

3x^2 -4x -7

alpha beta are zeroes of it so

 \alpha  +  \beta  =   \frac{ - ( - 4)}{3}  =  \frac{4}{3}  \\  \alpha  \beta  =  \frac{7}{3}  \\

if roots are

 \frac{1}{ \alpha } \:  \: and \:  \:  \frac{1}{ \beta }  \\

so equation is

(x -  \frac{1}{ \alpha } )(x -  \frac{1}{ \beta } ) = 0 \\  \\  {x}^{2}  - x( \frac{1}{ \alpha }  +  \frac{1}{ \beta } ) +  \frac{1}{ \alpha  \beta }  = 0 \\  \\  {x}^{2}  - x( \frac{ \beta  +  \alpha }{ \alpha  \beta } ) +  \frac{1}{ \alpha  \beta }  = 0 \\

putting values in equation

 {x}^{2}  - x( \frac{ \frac{4}{3} }{ \frac{7}{3} } ) +  \frac{1}{ \frac{7}{3} }  = 0 \\  \\  {x}^{2}  -  \frac{4x}{7}  +  \frac{3}{7}  = 0 \\  \\ 7 {x}^{2}  - 4x + 3 = 0 \\

Similar questions