If alpha and beta are the zeros of the quadratic polynomials f (x) =x2-px+q, find the value of Alpha square + beta square
Answers
Answered by
270
Heya Dear,
__________________________________
Given,
α and ß are the zeroes of polynomial x² - px + q.
In this quadratic equation,
Coefficient of x² ( a ) = 1
Coefficient of x( b ) = -p
Constant term ( c ) = q.
We have,
⇒ Sum of zeroes = -b/a
⇒ α + ß = - ( - p ) / 1
∴ α + ß = p.
⇒ Product of zeroes = c/a
⇒ αß = q/1 = q
Now,
⇒ ( α + ß )² = α² + ß² + 2 αß
⇒ ( p )² = α² + ß² + 2 q
⇒ p² = α² + ß² + 2 q
∴ α² + ß² = p² - 2q
Hope it helps !
__________________________________
Given,
α and ß are the zeroes of polynomial x² - px + q.
In this quadratic equation,
Coefficient of x² ( a ) = 1
Coefficient of x( b ) = -p
Constant term ( c ) = q.
We have,
⇒ Sum of zeroes = -b/a
⇒ α + ß = - ( - p ) / 1
∴ α + ß = p.
⇒ Product of zeroes = c/a
⇒ αß = q/1 = q
Now,
⇒ ( α + ß )² = α² + ß² + 2 αß
⇒ ( p )² = α² + ß² + 2 q
⇒ p² = α² + ß² + 2 q
∴ α² + ß² = p² - 2q
Hope it helps !
Answered by
110
See the attachement for calculation
[α²+β²]=[p²-2q]
#Prashant24IITBHU
[α²+β²]=[p²-2q]
#Prashant24IITBHU
Attachments:
Similar questions