Math, asked by senthilkumar64, 11 months ago

if alpha and beta are the zeros of the quadritic polynomial such that alpha+beta=24 and alpha-beta=8. find the quadritic polynomial having alpha and beta as its zeroes​

Answers

Answered by kuldeep20941
1

Answer:

Required Polynomial  =  >  {x}^{2}  - 24x + 128

Step-by-step explanation:

=====================================

See The Attachment My Friend....

=====================================

Attachments:
Answered by mathdude500
2

Answer:

\boxed{\sf \: \sf \: f(x) = k({x}^{2} - 24x +  128), \: where \: k \:  \ne \: 0  \: }\\

Step-by-step explanation:

Given that,

\sf \:  \alpha  +  \beta  = 24 -  -  - (1) \\

and

\sf \:  \alpha  -  \beta  = 8 -  -  - (2) \\

On adding equation (1) and (2), we get

\sf \: 2 \alpha  = 32 \:  \: \implies\sf \:  \alpha  = 16 \\

On subtracting equation (2) from (1), we get

\sf \: 2 \beta   = 16 \:  \: \implies\sf \:   \beta   = 8 \\

Now, the required quadratic polynomial f(x) whose zeroes are \alpha and  \beta respectively is .

\sf \: f(x) = k[  {x}^{2} - ( \alpha   + \beta )x +  \alpha  \beta ], \: where \: k \:  \ne \: 0 \\

\sf \: f(x) = k[  {x}^{2} - ( 16 + 8 )x +  16 \times 8 ], \: where \: k \:  \ne \: 0 \\

\sf \: f(x) = k({x}^{2} - 24x +  128), \: where \: k \:  \ne \: 0 \\

Hence, the required polynomial is

\implies\sf \: \boxed{\sf \: \sf \: f(x) = k({x}^{2} - 24x +  128), \: where \: k \:  \ne \: 0  \: }\\

\rule{190pt}{2pt}

Additional Information

\begin{gathered} \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions