if alpha and beta are the zeros of x square - 6 X + K what is the value of k if 3 alpha + 2 B tech 20.
Answers
Answer
- k = - 16
Given
- α , β are the zeroes of x² - 6x + k
- 3α + 2β = 20
To Find
- Value of k
Solution
Compare given polynomial x² - 6x + k with ax² + bx + c , we get ,
- a = 1 , b = - 6 , c = k
3α + 2β = 20 ... (1) [ Given ]
Also given that α , β are zeroes of the polynomial .
So ,
Sum of zeroes ,
α + β = -b/a = -(-6)/1
⇒ α + β = 6 ... (2)
Product of zeroes ,
αβ = c/a = k/1
⇒ αβ = k ... (3)
On solving (1) & (2) , i.e., (1) - 2×(2) , we get ,
⇒ ( 3α + 2β ) - 2 ( α + β ) = 20 - 2(6)
⇒ 3α + 2β - 2α - 2β = 20 - 12
⇒ α = 8
On sub. α value in (2) , we get ,
⇒ 8 + β = 6
⇒ β = 6 - 8
⇒ β = - 2
On sub. α , β values in (3) , we get ,
⇒ (8)(-2) = k
⇒ - 16 = k
⇒ k = - 16
More Info
If α and ß are the zeroes of the polynomial
p(x) = x² - 6x + k. What is the value of 3α + 2ß = 20.
★ Given that,
- P(x) = x² - 6x + k
- 3α + 2ß = 20 ..... 1
★ To find,
- The value of k.
★ Let,
- a = 1
- b = - 6
- c = k
We know that,
- Substitute the values
- Substitute the values.
★ Now,
Multiply equation 1 with 2. We get,
From the equations 1 & 4,we get,
Substitute the value of α in 1,to get ß.
Now, substitute the values of α & ß in 3,to get k.