English, asked by sherlin88, 8 months ago

if alpha and beta are the zeros of x square - 6 X + K what is the value of k if 3 alpha + 2 B tech 20.

Answers

Answered by BrainlyIAS
14

Answer

  • k = - 16

Given

  • α , β are the zeroes of x² - 6x + k
  • 3α + 2β = 20

To Find

  • Value of k

Solution

Compare given polynomial x² - 6x + k with ax² + bx + c , we get ,

  • a = 1 , b = - 6 , c = k

3α + 2β = 20 ... (1) [ Given ]

Also given that α , β are zeroes of the polynomial .

So ,

Sum of zeroes ,

α + β = -b/a = -(-6)/1

α + β = 6 ... (2)

Product of zeroes ,

αβ = c/a = k/1

αβ = k ... (3)

On solving (1) & (2) , i.e., (1) - 2×(2) , we get ,

⇒ ( 3α + 2β ) - 2 ( α + β ) = 20 - 2(6)

⇒ 3α + 2β - 2α - 2β = 20 - 12

α = 8

On sub. α value in (2) , we get ,

⇒ 8 + β = 6

⇒ β = 6 - 8

β = - 2

On sub. α , β values in (3) , we get ,

⇒ (8)(-2) = k

⇒ - 16 = k

k = - 16

More Info

\boxed{\begin{minipage}{6.6cm}  $ \rm   For\ a\ cubic\ polynomial\  ax^3+bx^2+cx+d   ,\\\\\rm Sum\ of\ zeroes,\\\\\rm {\star \;  \alpha+\beta+\gamma=\dfrac{-b}{a} }\\\\\rm Sum\ of\ Product\ of\ zeroes,\\\\\rm \star \; \alpha\beta+\beta\gamma+\gamma\alpha=\dfrac{c}{a}\\\\\rm Product\ of\ zeroes,\\\\\star \; \alpha \beta \gamma=\dfrac{-d}{a} $\end{minipage}}

Answered by Anonymous
9

\rm\large\green{\underline{ Question : }}

If α and ß are the zeroes of the polynomial

p(x) = x² - 6x + k. What is the value of 3α + 2ß = 20.

\rm\large\green{\underline{ Solution : }}

Given that,

  • P(x) = x² - 6x + k
  • 3α + 2ß = 20 ..... 1

To find,

  • The value of k.

Let,

  • a = 1
  • b = - 6
  • c = k

We know that,

\tt\green{\implies Sum\:of\:the\:zeroes\:= \alpha + \beta = \frac{-b}{a}}

  • Substitute the values

\sf\:\implies \alpha + \beta = \frac{-(-6)}{1}

\sf\:\implies \alpha + \beta = 6 ..... 2

\tt\green{ \implies Product\:of\:the\:zeroes\:= \alpha\beta = \frac{c}{a}}

  • Substitute the values.

\sf\:\implies \alpha\beta = \frac{k}{1}

\sf\:\implies \alpha\beta = k .....3

Now,

Multiply equation 1 with 2. We get,

\sf\:\implies 2\alpha + 2\beta = 12 .....4

From the equations 1 & 4,we get,

\sf\:\implies - \alpha = -8

\sf\:\implies \alpha = 8

\boxed{ \alpha = 8 }

Substitute the value of α in 1,to get ß.

\sf\:\implies 8 + \beta = 6

\sf\:\implies  \beta = 6 - 8

\sf\:\implies  \beta =  - 2

\boxed{ \beta = - 2 }

Now, substitute the values of α & ß in 3,to get k.

\sf\:\implies  8(-2) = k

\sf\:\implies  k = - 16

\underline{\boxed{\bf{\orange{ \therefore The\:value\:of\: k \: is\: - 16}}}}\:\red{\bigstar}

Similar questions