Math, asked by punitmittal1980, 4 days ago

If alpha and beta are the zeros of x square -p(x + 2) - c then alpha + 2 into beta + 2 is equal to?Hint-Ans in terms of c​

Answers

Answered by pratharshan8
1

Answer:

The answer is 3.

Step-by-step explanation:

Given \: that \\ f(x) =  {x}^{2}  - p(x + 2) - c \\  =  {x}^{2}  - px - 2p - c

By comparing with,  {ax}^{2}  + bx + c we have,

a = 1 \\ b =  - p \\ c = (2p + c)

Sum of zeroes

( \alpha  +  \beta ) =  \frac{ - b}{a}  =   \frac{ - ( - p)}{1}  = p \\

Product of zeroes

( \alpha  \beta ) =  \frac{c}{a}  =   \frac{ - (2p  + c)}{1}  = (2p + 1)

Now,

( \alpha  + 2)( \beta  + 2) =  \alpha  \beta  + 2( \alpha  +  \beta ) + 4 \\  =  - (2p + 1) + 2(p) + 4 \\  =  - 2p - 1 + 2p + 4 \\  = 3

Ans: 3

Answered by anindyaadhikari13
10

\textsf{\large{\underline{Solution}:}}

Given That:

 \rm \longrightarrow f(x) =  {x}^{2}  - p(x + 2) - c

 \rm \longrightarrow f(x) =  {x}^{2}  - px - 2p - c

 \rm \longrightarrow f(x) =  {x}^{2}  - px - (2p + c)

Comparing f(x) with Ax² + Bx + C, we get:

 \rm \longrightarrow A= 1

 \rm \longrightarrow B=  -p

 \rm \longrightarrow C = - 2p-c

It's given that α and β are the zeros of f(x). Therefore:

 \rm \longrightarrow  \alpha   + \beta  =  \dfrac{ - B}{A}

 \rm \longrightarrow  \alpha   + \beta  =  p

 \rm \longrightarrow  \alpha\beta  =  \dfrac{C}{A}

 \rm \longrightarrow  \alpha\beta  =  - 2p - c

Now:

 \rm = ( \alpha  + 2)( \beta  + 2)

 \rm =  \alpha  \beta  + 2( \alpha   + \beta ) + 4

 \rm =   - 2p - c+ 2p+ 4

 \rm =4 - c

★ Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

1. Relationship between zeros and coefficients (Quadratic Polynomial)

Let f(x) = ax² + bx + c and let α and β be the zeros of f(x).

Therefore:

\rm\longrightarrow\alpha+\beta=\dfrac{-b}{a}

\rm\longrightarrow\alpha\beta=\dfrac{c}{a}

2. Relationship between zeros and coefficients (Cubic Polynomial)

Let f(x) = ax³ + bx² + cx + d and let α, β and γ be the zeros of f(x).

Therefore:

\rm\longrightarrow \alpha+\beta+\gamma=\dfrac{-b}{a}

\rm\longrightarrow \alpha\beta+\beta\gamma+\alpha\gamma=\dfrac{c}{a}

\rm\longrightarrow \alpha\beta\gamma=\dfrac{-d}{a}


anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions