Math, asked by kukupatel00, 7 months ago

if alpha and beta are the zeros such that alpha+ beta =24 and alpha -beta=8 find alpha and beta​

Answers

Answered by mathdude500
1

Answer:

\boxed{\sf \: \alpha  = 16 \:  \: and \:  \:  \beta  = 8 \: } \\  \\

Step-by-step explanation:

Given that,

\sf \:  \alpha  +  \beta  = 24  -  -  - (1)\\

and

\sf \:  \alpha  - \beta  =8 -  -  - (2) \\

On adding equation (1) and (2), we get

\sf \: 2 \alpha  = 32 \: \implies\sf \:  \alpha  = 16 \\

On subtracting equation (2) from (1), we get

\sf \: 2 \beta  = 16 \: \implies\sf \:  \beta  = 8 \\

Hence,

\implies\sf \:  \alpha  = 16 \:  \: and \:  \:  \beta  = 8 \\

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions