Math, asked by Vishnusri15, 1 year ago

If alpha and beta are two zeros of 2(x)2-5x+8 find (alpha)2÷beta+(beta)2÷alpha

Answers

Answered by pradipta3
1
mark it brainiest and follow me
Attachments:

pradipta3: brainiest plzz
Answered by LovelyG
0

Answer :

2x² - 5x + 8

Sum of zeroes = - b/a

α + β = -(-5)/2

α + β = 5/2

Product of zeroes = c/a

αβ = 8/2 = 4

Now,

 \frac{ \alpha {}^{2}  }{ \beta }  +  \frac{ \beta  {}^{2} }{ \alpha }  \\  \\  \frac{ \alpha {}^{3}    + \beta {}^{3}}{ \alpha  \beta }

We know that ;

α³ + β³ = (α + β)[(α + β)² - 3αβ]

⇒ α³ + β³ = 5/2 [ (5/2)² - 3 * 4]

⇒ α³ + β³ = 5/2 [ 25 / 4 - 12]

⇒ α³ + β³ = 5/2 [ 25 - 48/12]

⇒ α³ + β³ = 5/2 * (-23/12)

⇒ α³ + β³ = - 115/24

Now,

 \frac{ \alpha  {}^{3}  +  \beta ^{3}  }{ \alpha  \beta }  \\  \\  \frac{  \frac{ - 115}{24} }{4}  \\  \\  \frac{ - 115}{24}  \times  \frac{1}{4}  \\  \\  \frac{ - 115}{96}

_______________________

Similar questions