Math, asked by sBarsha111, 1 year ago

if alpha and beta are two zeros of the 2 x square - 5 x minus 7 then find the polynomial whose zeros are 2 alpha + 3 Beta and 3 alpha + 2 Beta

Attachments:

Answers

Answered by harshitha100
3
given equation,
2x²-5x-7
2x²-7x+2x-7
x(x-7) 1(x-7)
so x=7
x=-1
alpha=μ=7
β=-1
another equation zeroes are 2μ+3β,3μ+2β
2(7)+3(-1),3(7)+2(-1)
11,19
equation of the given zeroes
x²+(μ+β)x-μβ
x²+(11+19)x-11*19
x²+30x-209
I HOPE THIS WILL HELP U

SURESH22222: hello
Answered by srijitachakravorty
3

Answer:


Step-by-step explanation:

HI !


NOTE :-

 α² + β² can be written as (α + β)² - 2αβ


p(x) = 2x² - 5x + 7

a = 2 , b = - 5 , c = 7


α and β are the zeros of p(x)


we know that ,

sum of zeros = α + β

                     = -b/a

                     = 5/2


product of zeros = c/a

                          = 7/2

===============================================


2α + 3β and 3α + 2β are zeros of a polynomial.


sum of zeros = 2α + 3β+ 3α + 2β

                     = 5α + 5β

                     = 5 [ α + β]

                    = 5 × 5/2

                   = 25/2


product of zeros = (2α + 3β)(3α + 2β)

                         = 2α [ 3α + 2β] + 3β [3α + 2β]

                        = 6α² + 4αβ + 9αβ + 6β²

                        = 6α² + 13αβ +  6β²

                        = 6 [ α² + β² ] + 13αβ

                        = 6 [ (α + β)² - 2αβ ] + 13αβ

                        = 6 [ ( 5/2)² - 2 × 7/2 ] + 13× 7/2

                        = 6 [ 25/4 - 7 ] + 91/2

                        = 6 [ 25/4 - 28/4 ] + 91/2

                        = 6 [ -3/4 ] + 91/2

                       = -18/4 + 91/2

                       = -9/2 + 91/2

                       = 82/2

                       = 41


                                                                          -18/4 = -9/2 [ simplest form ]


a quadratic polynomial is given by :-


k { x² - (sum of zeros)x + (product of zeros) }


k {x² - 5/2x + 41}


k = 2


2 {x² - 5/2x + 41 ]


2x² - 5x + 82                   -----> is the required polynomial


Similar questions