Math, asked by jyoti332004, 1 year ago

if alpha and beta are zero of polynomial of 3x^2+2x–6then find the value of 1/alpha +1/beta​

Answers

Answered by Anonymous
1

The given polynomial is

3 {x}^{2}  + 2x - 6

Comparing this polynomial with standard polynomial

a {x}^{2}  + bx  +  c

We get

a = 3

b =2

c = - 6

Since

 \alpha  \:  \:  \: and \:  \beta

are zeroes of the given polynomial

3 {x}^{2}  + 2x - 6

Then,

 \alpha  +  \beta  =  -  \frac{b}{a}  =  -  \frac{2}{3}

AND

 \alpha  \beta  =  \frac{c}{a}  =   -  \frac{6}{3}  =  - 2 \:  \:  \: (1)

We know that

 {( \alpha  -  \beta )}^{2}  =  {( \alpha  +  \beta )}^{2}  - 4 \alpha  \beta  \\  \\  =  {( \alpha  -  \beta )}^{2}  =  -   { (\frac{  2}{3}) }^{2}  - 4 \times  - 2 \\  \\ =   {( \alpha  -  \beta )}^{2}  =  \frac{4}{9}  + 8 \\  \\  =  {( \alpha  -  \beta )}^{2}  =  \frac{4 + 72}{9}  =  \frac{76}{9}

THEREFORE

 \alpha  -  \beta  =   \frac{ \sqrt{76} }{3}  \\  \\  =    \frac{ \sqrt{4 \times 19} }{3}   \\  \\  =  \frac{2 \sqrt{19} }{3}  \:  \:  \: (2)

WE KNOW THAT

 {( \alpha  +  \beta )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  \\  \\   {( -   \frac{2}{3} )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2( - 2) \\  \\  \frac{4}{9}  =  {  \alpha }^{2}  +  { \beta }^{2}  - 4 \\  \\  \frac{4}{9}  + 4 =  { \alpha }^{2}  +  { \beta }^{2}  \\  \\  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{40}{9}  \:  \:  \:  \: (3)

WE KNOW THAT

 { (\alpha +  \beta ) }^{3}  =  { \alpha }^{3}  +  { \beta }^{3}  - 3 \alpha  \beta ( \alpha  +  \beta ) \\  \\  ( - { \frac{ 2}{3}) }^{3}  =   { \alpha }^{3}  +  { \beta }^{3}  + 3( - 2)( -  \frac{2}{3} ) \\  \\  -   \frac{8}{27}  =  { \alpha }^{3}  +  { \beta }^{3}  + 4 \\  \\  -  \frac{8}{27}  - 4 =  { \alpha }^{ 3}  +  { \beta }^{3} \\  \\  \frac{ - 8 - 108}{27}  =  { \alpha }^{3}  +  { \beta }^{3}  \\  \\  { \alpha }^{3}  +  { \beta }^{3}  =  -  \frac{116}{27}  \:  \:  \: (4)

Then

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }  \\  \\  =  \frac{ \beta  +  \alpha }{ \alpha  \beta }  \\  \\  =  \frac{ \alpha  +  \beta }{ \alpha  \beta }  \\  \\  =  \frac{ -  \frac{ 2 }{3} }{  - \frac{ 2}{1} }  \\  \\  =  -  \frac{2}{3}  \times  -  \frac{1}{2}  \\  \\  =  \frac{1}{3}

#BEBRAINLY

Similar questions