if alpha and beta are zeroes of 2x^2-4x+5, find:
a) 1/alpha+1/beta
b)
Please quickly help!
Answers
EXPLANATION.
α, β are the zeroes of the polynomial.
⇒ 2x² - 4x + 5.
As we know that,
Sum of the zeroes of the quadratic equation.
⇒ α + β = -b/a.
⇒ α + β = -(-4)/2 = 2.
Products of the zeroes of the quadratic equation.
⇒ αβ = c/a.
⇒ αβ = 5/2.
To find :
(1) = 1/α + 1/β.
⇒ β + α/αβ.
⇒ 2/5/2.
⇒ 2/1 x 2/5 = 4/5.
(2) = (α - β)².
⇒ α² + β² - 2αβ.
As we know that,
Formula of :
⇒ (x - y)² = x² + y² - 2xy.
⇒ (x² + y²) = (x + y)² - 2xy.
Using this formula in the equation, we get.
⇒ (α + β)² - 2αβ - 2αβ.
⇒ (α + β)² - 4αβ.
⇒ (2)² - 4(5/2).
⇒ 4 - 10 = -6.
Value of :
(1) = 1/α + 1/β = 4/5.
(2) = (α - β)² = -6.
MORE INFORMATION.
Nature of the roots of the quadratic expression.
(1) = Real and unequal, if b² - 4ac > 0.
(2) = Rational and different, if b² - 4ac is a perfect square.
(3) = Real and equal, if b² - 4ac = 0.
(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.
Given :-
2x² - 4x + 5
To Find :-
1/α + 1/β
(α - β)²
Solution :-
We know that
Sum of zeroes = -b/a
Here
b = -4
a = 2
-(-4)/2
4/2
2/1
2
Product of zeroes = c/a
c = 5
a = 2
5/2
Now
1/α + 1/β = α + β/αβ
= 2/(5/2)
= 2/5 × 2/1
= 4/5
b)
We know that
(α - β)² = (α + β)² - 4αβ
(2)² - 4(5/2)
4 - 20/2
8 - 20/2
-12/2
-6
[tex][/tex]