Math, asked by aravahuja8499, 1 year ago

If alpha and beta are zeroes of 3x^2+11x-4 .Find the value of alpha÷beta+ beta÷alpha

Answers

Answered by Aurora34
56
Given p(x)= 3x^2+11x-4

we know that,

sum of zeroes= -b/a

 \alpha  +  \beta  =  \frac{ - 11}{3}
______________(1)

Also,

sum of zeroes= c/a

 \alpha  \beta  =  \frac{ - 4}{3}
__________________(2)

now,


 =  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  \\  \\  =  \frac{ { \alpha }^{2}  +  { \beta }^{2}  }{ \alpha  \beta }

using identity,

 {x}^{2}  +  {y}^{2}  = (x + y)^{2}  - 2xy
we have,

 \frac{( \alpha  +  \beta )^{2} - 2 \alpha  \beta  }{ \alpha  \beta }   \\  \\ from \: 1 \: and \: 2 \:  \\  \\  =  (\frac{  { - 11}^{2}  }{3^{2} }  -  \frac{2 \times  - 4}{3} )  \div  \frac{ - 4}{3} \\  \\  =(  \frac{ 121}{9}   +  \frac{8}{3} ) \div  \frac{ - 4}{3}  \\  \\  =  \frac{145}{9}  \times   -  \frac{3}{4}  \\  \\  =  -  \frac{145}{12}

_______________________


hope it helps!!

Similar questions