Math, asked by Tanay123456789, 10 months ago

If alpha and beta are zeroes of p(x)= x^2-2x-3 find a polynomial whose zeroes are alpha-1/alpha+1 and beta-1/beta+1

Answers

Answered by Anonymous
8

Given,

f(x) = x^2 - 2x - 3 and zeroes are alpha-1/alpha+1 and beta-1/beta+1.

To Find,

Quadratic polynomial = ?

Solution,

f(x) = x^2 - 2x - 3

a = 1, b = -2, c = 3

(α - 1)/α + 1 and (β - 1)/β + 1.

Sum of zeroes will be,

==> [(α - 1)(β + 1) + (β - 1)(α + 1)]/[(α + 1)(β + 1)]

==> (αβ + α - β - 1 + αβ + β+ β - α - 1)/(3 + 2 + 1)

==> 3 - 1 + 3 - 1/6

==> 4/6

==> 2/3

Product of zeroes will be,

==> [(α - 1)/α + 1] * [(β - 1)/β + 1)]

==> 3 - (α + β) + 1/3 + 2 + 1

==> 3 - 2 + 1/6

==> 2/6

==> 1/3

Required polynomial,

==> x² - (sum of zeroes) + product of zeroes

==> x² - (2/3)x + 1/3

==> 3x² - 2x + 1

#BeBrainly

Answered by SwiftTeller
169

Appropriate Question:

 \sf{If  \: alpha \:  and \:  beta  \: are \:  the  \: zeroes  \: of \:  the  \: q uadratic  \: polynomial \:  p(x)  =  x^2-2x+3,  \: find \:  a  \: polynomial \:  whose \:  zeroes  \: are \:  \frac{ \alpha  - 1}{ \alpha  + 1}  , \:   \frac{ \beta  - 1}{ \beta  + 1} } \\

Solution:

 \sf{We \: have ,   \: p(x)= {x}^{2} - 2x + 3 }

Here,

 \sf { \alpha  +  \beta  =  \frac{ - b}{a} } \\ \\  \sf{ \alpha  +  \beta  =  \frac{ - ( - 2)}{1} }  \\ \\   \sf{\alpha  +  \beta  = 2} \\

And

 \sf{ \alpha  \beta  =  \frac{c}{a} } \\  \\  \alpha  \beta  =  \frac{3}{1}  \\  \\  \alpha  \beta  = 3

Now,

 \sf{sum  \: (S) \: \: of \: zeroes} =  \frac{ \alpha  - 1}{ \alpha  + 1}  +  \frac{ \beta  - 1}{ \beta  + 1}    \\ \\ \sf{= \frac{( \alpha -1)( \beta +1)+( \beta -1)( \alpha +1)}{( \alpha +1)( \beta +1)} } \\  \\ \sf{ = \frac{ \alpha  \beta+ \alpha - \beta -1+ \alpha  \beta + \beta - \alpha -1 }{ \alpha  \beta + \alpha + \beta +1} } \\  \\ \sf{= \frac{2 \alpha  \beta -2}{ \alpha  \beta +( \alpha + \beta )+1} }

By, Putting Values

\sf{ = { \frac{2(3) - 2}{3+2+1} }} \\  \\ \sf{ =  \frac{6 - 2}{6}  }\\  \\ \sf{= \frac{4}{6} } \\  \\ \sf{ =  \frac{2}{3} }

 \sf{Also,  \: Product \:  (P)  \: Of  \: Zeroes = \frac{ \alpha -1}{ \alpha +1}  \times  \frac{ \beta -1}{ \beta +1} } \\   \\   \sf{=  \frac{( \alpha -1)( \beta -1)}{ ( \alpha +1)(  \beta +1)} } \\  \\  \sf{= \frac{ \alpha  \beta - \alpha - \beta +1}{ \alpha  \beta +  \alpha + \beta +1}}  \\  \\  \sf{ =  \frac{ \alpha  \beta -( \alpha + \beta )+1}{ \alpha  \beta +( \alpha + \beta )+1 }  }

By, Putting Values

\sf{  = \frac{3 - 2 + 1}{3 + 2 + 1} } \\ \\  \sf{ =  \frac{2}{6} } \\  \\ \sf{ =  \frac{1}{3} }

  \sf{\therefore \: Required \: quadratic \: polynomial, \: p(x)=k\{ {x}^{2}-Sx+P\} }

: \implies \sf{p(x) = k  \bigg\{ {x}^{2}  -  \frac{2}{3}x +  \frac{1}{3}   \bigg \}}

Final Answer:

: \leadsto \mathfrak{p(x) = k  \bigg\{ {x}^{2}  -  \frac{2}{3}x +  \frac{1}{3}  \bigg\} } \\

Similar questions