Math, asked by manigupt74, 11 months ago

if alpha and beta are zeroes of P(x)=x square-34+x then find a+p+aẞ​

Answers

Answered by paytmM
182

\huge{\underline{\underline{\mathfrak{\green{\bf{Questions:-}}}}}}.

  • If \alpha\:and\:\:\beta are Zeros of P(x) = x² - 34 +x , then find \:(\alpha+\beta+\alpha\beta).

\huge{\underline{\underline{\mathfrak{\bf{Solution:-}}}}}.

Given Equation

  • \large\boxed{\:p(x)\:=\:(x^2+x-34)}

  • \alpha\:and\beta\:are\:Zeros

____________________________

We Know ,

\boxed{\:Sum\:of\:Zeros\:=\frac{-(cofficiant\:of\:x)}{(Cofficient\:of\:x^2)}}

\implies\:(\alpha+\beta)\:=\frac{-(1)}{1}

\implies\:(\alpha+\beta)\:=\:(-1)........(1)

____________________________

Again,

\large\boxed{\:Product\:of\:Zeros\:=\frac{Constant\:part}{Coefficient\:of\:x^2}}

\implies\:(\alpha\beta)\:=\frac{-34}{1}

\implies\:(\alpha\beta)\:=\:-34..........(2)

\large{\underline{\underline{\mathfrak{\bf{Calculate\:here:-}}}}}.

\implies\:(\alpha+\beta+\alpha\beta)

\implies\:(\:-1\:+\:(-34)

\implies\:(\:-35)

____________________________

\huge{\underline{\underline{\mathfrak{\green{\bf{Answer:-}}}}}}.

\red{\bold{\:-35}}

Similar questions