Math, asked by Pallavn, 1 year ago

If alpha and beta are zeroes of polynomial 3x2 5x 13 then evaluate alpha square upon beta plus beta square upon alpha

Answers

Answered by madeducators3
16

Given:

α and β are zeros of polynomial 3^{2}  + 5x + 13

To Find:

\frac{\alpha ^{2} }{\beta } +  \frac{\beta ^{2} }{\alpha } = ?

Solution:

For a quadratic equation ,

Sum of zeros = \alpha + \beta =\frac{-b}{a} \\

Product of Zeros = \alpha \beta = \frac{ c}{a}

For the given quadratic equation a = 3 b = 5 c = 13

\alpha \beta = \frac{c}{a} = \frac{13}{3}

\alpha + \beta = \frac{-b}{a} = \frac{-5}{3}

Evaluate  \frac{\alpha ^{2} }{\beta }  + \frac{\beta ^{2} }{\alpha } \\

     =    \frac{\alpha ^{3} + \beta ^{3}  }{\alpha\beta  }

(\alpha  + \beta )^{3} = \alpha ^{3} +  \beta ^{3}  + 3\alpha  \beta (\alpha + \beta  )\\\alpha ^{3} +  \beta ^{3} = (\alpha  + \beta )^{3} -  3\alpha  \beta (\alpha + \beta  )\\\frac{\alpha ^{3} +  \beta ^{3}  }{\alpha \beta  } = \frac{(\alpha  + \beta )^{3} -  3\alpha  \beta (\alpha + \beta  )\\ }{\alpha\beta  }

Substitute the values of

\alpha +  \beta = \frac{-5}{3} \\\alpha \beta = \frac{13}{3}

\frac{\alpha ^{3} + \beta ^{3}  }{\alpha\beta  } = \frac{460}{117}

The value of \frac{\alpha ^{3} + \beta ^{3}  }{\alpha\beta  } is equal to \frac{460}{117} .

Similar questions