if alpha and beta are zeroes of polynomial ax^2+bx+c.Find
1. alpha^3+beta^3
2. alpha-beta
Answers
α and β are the zeroes of the polynomial ax² + bx + c.
★ Sum of the zeroes : α + β = -b/a
★ Product of the zeroes : αβ = c/a
Case 1 :
α³ + β³ [ Given ]
α³ + β³ ⇒ ( α + β ) ( α² + β² - αβ )
α³ + β³ ⇒ ( α + β ) [(α² + β² +2αβ ) - 3αβ ]
α³ + β³ ⇒ ( α + β ) [ ( α + β )² - 3αβ ]
★ Putting the value
α³ + β³ ⇒ -b/a [ ( -b/a )² - 3c/a ]
α³ + β³ ⇒ -b/a [ b²/a² - 3c/a ]
α³ + β³ ⇒ -b/a ( b² -3ac / a² )
α³ + β³ ⇒ -b³ + 3ac / a³
Case 2 :
α - β [ Given ]
Squaring ,we get
( α - β )² ⇒ ( α + β )² - 4αβ
( α - β )² ⇒ ( α + β )² - 4αβ
★ Putting the values
( α - β )² ⇒ ( -b/a )² - 4 × c/a
( α - β )² ⇒ b²/a² - 4c/a
( α - β )² ⇒ b² - 4ac / a²
α - β ⇒ √b² - 4ac / a
SOLUTION :-
Let us assume that α and β are the zeroes of the polynomial ax² + bx + c.
As we know that,
• Sum of the zeroes : α + β = -b/a
• Product of the zeroes : α×β = c/a
In a first part,
α³ + β³ ------- [Given]
α³ + β³ => ( α + β ) ( α² + β² - αβ )
α³ + β³ => ( α + β ) [(α² + β² +2αβ ) - 3αβ ]
α³ + β³ => ( α + β ) [ ( α + β )² - 3αβ ]
•[Putting their values].
α³ + β³ => -b/a [ ( -b/a )² - 3c/a ]
α³ + β³ => -b/a [ b²/a² - 3c/a ]
α³ + β³ => -b/a ( b² -3ac / a² )
α³ + β³ => -b³ + 3ac / a³
In a second part,
α - β ------- [Given]
Squaring , (α - β) and we get,
( α - β )² => ( α + β )² - 4αβ
( α - β )² => ( α + β )² - 4αβ
•[Putting their values]
( α - β )² => ( -b/a )² - 4 × c/a
( α - β )² => b²/a² - 4c/a
( α - β )² => b² - 4ac / a²
α - β => √b² - 4ac / a
Answers :
• α³ + β³ = -b³ + 3ac / a³ .
• α - β = √b² - 4ac / a.