if alpha and beta are zeroes of polynomial ax2+bx+c find the value of 1/alpha square + 1/beta square
Answers
Answered by
0
Answer:
(b²- 2ac)/ c²
Step-by-step explanation:
Let α and β be the zeroes of the polynomial ax^2 +bx + c
α + β = -b/a
αβ = c/a
Value of 1/α² + 1/β²
= 1/α² + 1/β²
= α² + β² / (αβ)²
{( a + b )² = a² + b² + 2ab
a² + b² = ( a+b )² - 2ab , So α² + β² = -2(αβ) }
= (α + β)² -2(αβ) / (αβ)²
= (-b/a)² - 2(c/a) / (c/a) { Substitute the value of (α + β) and (αβ) } = (b²/a² - 2c/a) / (c²/a²)
= [(b²- 2ac)]/a²/ (c²/a²)
(b²- 2ac)/ c²
Similar questions