Math, asked by RomanEmpireofcoc, 1 year ago

if alpha and beta are zeroes of polynomial f(x)=x^2-1,find a quadratic polynomial whose zeroes are 2alpha/beta and 2beta/alpha

Answers

Answered by priyansh1111u
95
this is the correct answer i hope that you will be satisfied with this answer if yes than mark it as brainliest
Attachments:
Answered by mysticd
48

Answer:

The \: quadratic \: polynomial \: will\\ \: be \: x^{2}+4x+4

Step-by-step explanation:

Given, \\\alpha \: and \: \beta \\\: are \: zeroes \: of \: \\the \: polynomial \: f(x)=x^{2}-1

Compare f(x)= -1 with ax²+bx+c ,we get

a = 1 , b = 0 , c = -1

i)\alpha+\beta\\= \frac{-b}{a}\\=\frac{0}{1}\\=0--(1)

ii)\alpha\beta\\= \frac{c}{a}\\=\frac{-1}{1}\\=-1--(2)

iii)\frac{2\alpha}{\beta}+\frac{2\beta}{\alpha}\\=\frac{2(\alpha^{2}+\beta^{2})}{\alpha\beta}\\=\frac{2[(\alpha+\beta)^{2}-2\alpha\beta]}{\alpha\beta}\\=\frac{2[0-2(-1)]}{(-1)}\\=\frac{4}{(-1)}\\=-4 --(3)

iv)(\frac{2\alpha}{\beta})(\frac{2\beta}{\alpha})\\=4--(4)

Therefore,

The quadratic polynomial is

k[x^{2}-\big(\frac{2\alpha}{\beta}+\frac{2\beta}{\alpha}\big)+)(\frac{2\alpha}{\beta})(\frac{2\beta}{\alpha})]\\, \: where \: k \: is \: a \: constant

=k[x^{2}-(-4)x+4

=k(x^{2}+4x+4)

We\:can\: put \: different \: values\: of \: k

When \: k = 1 ,\: \\the \: quadratic \: polynomial \: will\\ \: be \: x^{2}+4x+4

•••♪

Similar questions