If alpha and beta are zeroes of polynomial x^2-x-2 find a polynimoal whose zereos are alpha^2/beta^2
Answers
Answered by
6
Answer:
x² - 5x + 4
Step-by-step explanation:
Given polynomial:
x² - x - 2, on comparing the given equation with ax² + bx + c, we get -
- a = 1
- b = - 1
- c = - 2
Sum of zeroes = - b/a
⇒ α + β = - (-1)/1
⇒ α + β = 1
Product of zeroes = c/a
⇒ αβ = - 2/1
⇒ αβ = - 2
Now, we need a polynomial whose zeroes are α² and β².
Sum of zeroes = α² + β²
⇒ α² + β² = (α + β)² - 2αβ
⇒ α² + β² = (1)² - 2(-2)
⇒ α² + β² = 1 + 4
⇒ α² + β² = 5
Product of zeroes = α²β²
⇒ α²β² = (αβ)²
⇒ α²β² = (-2)²
⇒ α²β² = 4
Therefore, the required polynomial is;
= x² - (α² + β²)x + α²β²
= x² - 5x + 4
Hence, the required quadratic polynomial is x² - 5x + 4.
Similar questions