Math, asked by akashakki8385, 1 year ago

if alpha and beta are zeroes of polynomial x2-2x+3 ,find a polynomial whose roots are alpha minus 1,upon alpha plus 1 and beta minus 1 upon beta plus 1

Answers

Answered by savitaiti1325
91

hope it helps you out

Attachments:
Answered by aquialaska
47

Answer:

Required polynomial is k ( 3x² - 2x + 1 )

Step-by-step explanation:

Given: Quadratic polynomial,

x² - 2x + 3

let α and β are zeroes of polynomial.

Consider,

x² - 2x + 3 = 0

to find zeroes we use quadratic formula,

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

x=\frac{-(-2)\pm\sqrt{(-2)^2-4\times1\times3}}{2\times1}

x=\frac{2\pm\sqrt{4-12}}{2}

x=\frac{2\pm\sqrt{-8}}{2}

x=\frac{2\pm\sqrt{8}\times\sqrt{-1}}{2}

x=\frac{2\pm2\sqrt{2}i}{2}

x=1\pm\sqrt{2}i

So, \alpha=1+\sqrt{2}   and [tex\beta=1-\sqrt{2}i[/tex]

New roots are

\frac{\alpha-1}{\alpha+1}=\frac{1+\sqrt{2}i-1}{1+\sqrt{2}i+1}=\frac{\sqrt{2}i}{2+\sqrt{2}i}=\frac{\sqrt{2}i}{2+\sqrt{2}i}\times\frac{2-\sqrt{2}i}{2-\sqrt{2}i}=\frac{2\sqrt{2}i-2\times(-1)}{4-2\times(-1)}=\frac{1+\sqrt{2}i}{3}

\frac{\beta-1}{\beta+1}=\frac{1-\sqrt{2}i-1}{1-\sqrt{2}i+1}=\frac{-\sqrt{2}i}{2-\sqrt{2}i}=\frac{-\sqrt{2}i}{2-\sqrt{2}i}\times\frac{2+\sqrt{2}i}{2+\sqrt{2}i}=\frac{-2\sqrt{2}i-2\times(-1)}{4-2\times(-1)}=\frac{1-\sqrt{2}i}{3}

Now Sum of new zeroes = \frac{1+\sqrt{2}i}{3}+\frac{1-\sqrt{2}i}{3}

                                         = \frac{2}{3}

Product of new zeroes =  \frac{1+\sqrt{2}i}{3}\times\frac{1-\sqrt{2}i}{3}

                                         = \frac{1^2-(\sqrt{2}i)^2}{9}

                                         = \frac{1-2\times(-1)}{9}

                                         = \frac{1}{3}

Thus, New polynomial is

k(x^2-\frac{2}{3}x+\frac{1}{3})

\implies\:\:k(3x^2-2x+1)

Therefore, Required polynomial is k ( 3x² - 2x + 1 )

Similar questions