if alpha and beta are zeroes of quadratic polynomial ax²+bx+c, evaluate
(i)
(ii)
(iii)
Answers
Answer:
i) α² + ß² = b²/a² - 2c/a
ii) α/ß + ß/α = b²/ac - 2
iii) α³ + ß³ = 3bc/a² - b³/a³
Note:
★ The possible values of variable for which the polynomial becomes zero are called its zeros.
★ A quadratic polynomial can have atmost two zeros.
★ If α and ß are the zeros of the quadratic polynomial ax² + bx + c , then ;
Sum of zeros , (α + ß) = -b/a
Product of zeros , αß = c/a
Solution:
Here,
The given quadratic polynomial is :
ax² + bx + c .
Also,
α and ß are the zeros of the given quadratic polynomial , thus ;
α + ß = -b/a
αß = c/a
Now,
=> (α + ß)² = α² + ß² + 2αß
=> α² + ß² = (α + ß)² - 2αß
= (-b/a)² - 2(c/a)
= b²/a² - 2c/a
Hence,
α² + ß² = b²/a² - 2c/a
Now,
α/ß + ß/α = (α² + ß²)/αß
= (b²/a² - 2c/a)/(c/a)
= (b²/a² - 2c/a)×(a/c)
= b²/ac - 2
Hence,
α/ß + ß/α = b²/ac - 2
Now ,
α³ + ß³ = (α + ß)(α² - αß + ß²)
= (α + ß)(α² + 2αß + ß² - 3αß)
= (α + ß)[ (α + ß)² - 3αß ]
= (-b/a)[ (-b/a)² - 3(c/a) ]
= (-b/a)(b²/a² - 3c/a)
= -b³/a³ + 3bc/a²
= 3bc/a² - b³/a³
Hence,
α³ + ß³ = 3bc/a² - b³/a³