if alpha and beta are zeroes of quadratic polynomial ax²+bx+c, evaluate α³+β³
Answers
Answer:
α³ + ß³ = 3bc/a² - b³/a³
Note:
★ The possible values of variable for which the polynomial becomes zero are called its zeros.
★ A quadratic polynomial can have atmost two zeros.
★ If α and ß are the zeros of the quadratic polynomial ax² + bx + c , then ;
Sum of zeros , (α + ß) = -b/a
Product of zeros , αß = c/a
Solution:
Here,
The given quadratic polynomial is :
ax² + bx + c .
Also,
If α and ß are the zeros of the given quadratic polynomial , then ;
α + ß = -b/a
αß = c/a
Now ,
α³ + ß³ = (α + ß)(α² - αß + ß²)
= (α + ß)(α² + 2αß + ß² - 3αß)
= (α + ß)[ (α + ß)² - 3αß ]
= (-b/a)[ (-b/a)² - 3(c/a) ]
= (-b/a)(b²/a² - 3c/a)
= -b³/a³ + 3bc/a²
= 3bc/a² - b³/a³
Hence,
α³ + ß³ = 3bc/a² - b³/a³
Answer:
Step-by-step explanation:
ax²+bx+c
α+β= -b/a= -b/a
αβ=c/a
(α+β)³=α³+β³+3αβ(α+β)
(-b/a)³=α³+β³+3*c/a(-b/a)
-b/a*-b/a*-b/a=α³+β³+3*c/a*-b/a
(-b/a)²=α³+β³+3*c/a
α³+β³=3c/a+(b/a)²
= 3c+b²/a²