Math, asked by harshita135, 1 year ago

if alpha and beta are zeroes of quadratic polynomial f(x)=ax²+bx+c,then evaluate alpha - beta

Answers

Answered by TIRTH5828
6

 \alpha  \: and \:  \beta  \: are \: zeroes \: of \: f(x) = a {x}^{2}  + bx + c \\ we \: know \: that \: zeroes \: of \: a \: quadratic \: equation \: are \:  \frac{ - b +   \sqrt{ {b}^{2} - 4ac } }{2a} or \:  \frac{ - b -  \sqrt{ {b}^{2} - 4ac } }{2a}  \\ i.e. \alpha  =  \frac{ - b +   \sqrt{ {b}^{2} - 4ac } }{2a}  \\ \\   \beta  =  \frac{ - b -  \sqrt{ {b}^{2} - 4ac } }{2a} \\  \\  \alpha  -  \beta  = \frac{ - b +   \sqrt{ {b}^{2} - 4ac } }{2a}   - \frac{ - b -  \sqrt{ {b}^{2} - 4ac } }{2a} \\  =  \frac{ - b  +  \sqrt{ {b}^{2} - 4ac } + b +   \sqrt{ {b}^{2} - 4ac }}{2a}  \\  =  \frac{2  \sqrt{ {b}^{2} - 4ac }}{2a}  \\  \\  =  \frac{  \sqrt{ {b}^{2} - 4ac }}{a}
Similar questions