Math, asked by govind4306, 1 month ago

If alpha and beta are zeroes of quadratic polynomial f(x)= ax²+bx+c, evaluate 1/alpha³ + 1/beta³​

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bull\sf \:  \:  \:  \alpha,  \beta  \: are \: zeroes \: of \: f(x) =  {ax}^{2}  + bx + c

\large\underline{\sf{To\:Find - }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \:  \: \dfrac{1}{ { \alpha }^{3} }  + \dfrac{1}{ { \beta }^{3} }

\large\underline{\sf{Solution-}}

Given that

 \:\sf \:  \:  \:  \alpha,  \beta  \: are \: zeroes \: of \: f(x) =  {ax}^{2}  + bx + c

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha +   \beta  =  -  \: \dfrac{b}{a}

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  \beta  = \dfrac{c}{a}

Now,

Consider

\rm :\longmapsto\: \sf \:  \: \dfrac{1}{ { \alpha }^{3} }  + \dfrac{1}{ { \beta }^{3} }

 \sf \:  \:  =  \: \dfrac{ { \alpha }^{3}  +  { \beta }^{3} }{ { \beta }^{3}  { \alpha }^{3} }

 \sf \:  \:  =  \: \dfrac{ {( \alpha  +  \beta )}^{3}  - 3 \alpha  \beta ( \alpha   + \beta )}{ {( \alpha  \beta )}^{3} }

 \sf \:  \:  =  \: \dfrac{{\bigg(  - \dfrac{b}{a} \bigg) }^{3} - 3{\bigg( \dfrac{c}{a} \bigg) }{\bigg(  - \dfrac{b}{a} \bigg) }}{ {\bigg( \dfrac{c}{a} \bigg) }^{3} }

 \sf \:  \:  =  \: \dfrac{{\bigg( -  \dfrac{ {b}^{3} }{ {a}^{3}} + \dfrac{3bc}{ {a}^{2} } \bigg) }}{\dfrac{ {c}^{3} }{ {a}^{3} } }

 \sf \:  \:  =  \: {\bigg( \dfrac{  - {b}^{3} + 3abc }{  \cancel{{a}^{3} }} \bigg) } \times \dfrac{ \cancel{ {a}^{3}} }{ {c}^{3} }

 \sf \:  \:  =  \: \dfrac{ { - b}^{3} + 3abc }{ {c}^{3} }

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \quad\bf \: \dfrac{1}{ { \alpha }^{3} }  + \dfrac{1}{ { \beta }^{3} }  = \dfrac{ -  {b}^{3}  + 3abc}{ {c}^{3} } \quad}}

Additional Information :-

 \: \sf \:\alpha,\beta,\gamma\: are \: zeroes \: of \: f(x) =   {ax}^{3} +  {bx}^{2}  + cx + d \: then

\blue{ \boxed{ \sf \:  \alpha +   \beta  +  \gamma  =  - \dfrac{b}{a}}}

\blue{ \boxed{ \sf \:  \alpha  \beta +   \beta \gamma   +  \gamma \alpha   =   \dfrac{c}{a}}}

\blue{ \boxed{ \sf \:  \alpha \beta \gamma  =  - \dfrac{d}{a}}}

Similar questions