Math, asked by srividhya2020, 1 month ago

if alpha and beta are zeroes of the poly. p(x)= x^2 - 2x - 8 , find the quadratic poly. whose zeroes are 2alpha/beta and 2beta/alpha

Answers

Answered by pankajrajput99156
2

Answer:

x^2-5x+4=0

Step-by-step explanation:

Hope you will understand it

Attachments:
Answered by mahendra15aug
1

Let the zeroes of this polynomial be alpha and beta,

sum \: of \: zeroes \:  =  \frac{ - b}{a}  \\ product \: of \: zeroes \:  =  \frac{c}{a}  \\    \alpha  +  \beta  =   \frac{ - ( - 2)}{1}  \\  \alpha  +  \beta  = 2 \:  \:  \:  \:  \:  \:  \: eq {}^{n}  \: 1 {}^{st}  \\  \alpha  \beta  =  \frac{ - 8}{1}  \\  \alpha  \beta  =  - 8 \\ finding \: polynomial \: from \: zeroes \\ k( {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes) \\ k( {x}^{2}  - ( \frac{2 \alpha }{ \beta  }  +  \frac{2 \beta }{ \alpha } ) x + ( \frac{2 \alpha }{ \beta }  \times  \frac{2 \beta }{ \alpha } ) \\ k(  {x}^{2} - ( \frac{ {2 \alpha }^{2} +  {2 \beta }^{2}  }{ \alpha  \beta } )x + (4)) \\ k( {x}^{2}  -  (\frac{2( { \alpha }^{2}  +  { \beta }^{2}) }{ \alpha  \beta } )x + 4) \\ for \: finding \: the \: polynomial \: we \: \\ need \: the \: value \: of \:  { \alpha }^{2} +  { \beta }^{2} . \\  { \alpha }^{2}   +  { \beta }^{2}  = ( { \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  \\ put \: the \: value \: of \: ( \alpha  +  \beta ) \: and \:  \alpha  \beta . \\ ( {2})^{2} - 2( - 8) \\ 4 + 16 = 20 =  { \alpha }^{2}  +  { \beta }^{2}  \\

put \: the \: value \: of \:  { \alpha }^{2}+  { \beta }^{2}  \: in \: the \: expression \:  \\  {x}^{2}  + ( \frac{2( { \alpha }^{2} +  { \beta }^{2} ) }{ \alpha  \beta } )x + 4 \\  {x}^{2}  + ( \frac{-2(20)}{ - 8} )x + 4 \\  {x}^{2}  + ( \frac{-40}{ - 8} )x + 4 \\  {x}^{2}  +5x + 4

This polynomial has zeroes, 2alpha/beta and 2beta/alpha.

It was a nice question.

Similar questions
Hindi, 1 month ago