if alpha and beta are zeroes of the polynomial p(x) =3x² -2x -6 then find 1/ alpha + 1/ beta
Answers
Solution :
Given polynomial :
> p(x) = 3x^2 - 2x - 6 .
The roots of this polynomial are alpha and beta .
We need to find the value of 1/alpha + 1/beta.
One method to do this is to solve the expression and directly obtain the roots & substitute.
The other method is by comparing the coefficients.
We will be going with the later.
1/alpha + 1/beta
> ( alpha + beta )/( alpha beta )
For a polynomial of the form ax^2 + bx + c having the roots alpha and beta ;
alpha + beta = -b/a
alpha beta = c/a
> ( -b/a ) / ( c/a )
> ( -b/a ) * ( a/c)
> ( -b/c)
b = -2 and c = -6 in the original polynomial
Required value :
> ( 2/-6)
> -1/3 .
This is the answer.
____________________________________________________________
- if alpha and beta are zeroes of the polynomial p(x) =3x² -2x -6 then find 1/ alpha + 1/ beta
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
- A polynomial p(x) =3x² -2x -6 having zeroes alpha and beta.
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
Let us consider a quadratic polynomial p(x) =ax² + bx + c having zeroes p and q,
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─