Math, asked by viumin, 4 months ago

if alpha and beta are zeroes of the polynomial p(x) =3x² -2x -6 then find 1/ alpha + 1/ beta​

Answers

Answered by Saby123
1

Solution :

Given polynomial :

> p(x) = 3x^2 - 2x - 6 .

The roots of this polynomial are alpha and beta .

We need to find the value of 1/alpha + 1/beta.

One method to do this is to solve the expression and directly obtain the roots & substitute.

The other method is by comparing the coefficients.

We will be going with the later.

1/alpha + 1/beta

> ( alpha + beta )/( alpha beta )

For a polynomial of the form ax^2 + bx + c having the roots alpha and beta ;

alpha + beta = -b/a

alpha beta = c/a

> ( -b/a ) / ( c/a )

> ( -b/a ) * ( a/c)

> ( -b/c)

b = -2 and c = -6 in the original polynomial

Required value :

> ( 2/-6)

> -1/3 .

This is the answer.

____________________________________________________________

Answered by mathdude500
4

\large\underline\blue{\bold{Given \:  Question :-  }}

  • if alpha and beta are zeroes of the polynomial p(x) =3x² -2x -6 then find 1/ alpha + 1/ beta

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Given :-  }}

  • A polynomial p(x) =3x² -2x -6 having zeroes alpha and beta.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{To \:  Find :-  }}

\sf \:  \dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Formula \:  Used  :-  }}

Let us consider a quadratic polynomial p(x) =ax² + bx + c having zeroes p and q,

\begin{gathered}\begin{gathered}\bf then= \begin{cases} &\sf{p + q =  -  \dfrac{b}{a} } \\ &\sf{pq =  \dfrac{c}{a} } \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \:  since \:  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: p(x) =3x² -2x -6

\begin{gathered}\begin{gathered}\bf  \begin{cases} &\sf{ \alpha  +  \beta  =  - \dfrac{ - 2}{3}  = \dfrac{2}{3} } \\ &\sf{ \alpha  \beta  = \dfrac{ - 6}{3}  =  - 2} \end{cases}\end{gathered}\end{gathered}

\sf \:  Now,  \: \dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }

\sf \:   = \dfrac{ \beta  +  \alpha }{ \alpha  \beta }

\sf \:   = \dfrac{\dfrac{2}{3} }{ - 2}

\sf \:   =  - \dfrac{1}{3}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, \sf \:  \dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }  =  - \dfrac{1}{3} }}}}

Similar questions