Math, asked by djdjksjd, 2 months ago

if alpha and beta are zeroes of the polynomial x^2-4x+3 the form a quadratic polynomial whose zeroes are 1/alpha and 1/beta​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha  \: and \:  \beta  \: are \: zeroes \: of \:  {x}^{2} - 4x + 3

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  +  \beta  =  -  \: \dfrac{( - 4)}{1} = 4

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  \beta  = \dfrac{3}{1} = 3

Now,

Consider,

\rm :\longmapsto\:Sum \: of \: zeroes

\rm :\longmapsto\:\dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }

 \rm \:  \:  =  \:  \: \dfrac{ \alpha  +  \beta }{ \beta  \alpha }

 \rm \:  \:  =  \:  \:  \dfrac{4}{3}

\bf\implies \:\dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }  = \dfrac{4}{3}

Consider,

\rm :\longmapsto\:Product \: of \: zeroes

 \rm \:  \:  =  \:  \: \dfrac{1}{ \alpha  \beta }

 \rm \:  \:  =  \:  \: \dfrac{1}{ 3 }

\bf\implies \:\dfrac{1}{ \alpha  \beta }  = \dfrac{1}{3}

Hence,

The required Quadratic polynomial is

\red{\rm :\longmapsto\:f(x) = k\bigg( {x}^{2} - \bigg(\dfrac{1}{ \alpha }  + \dfrac{1}{ \beta } \bigg)x + \dfrac{1}{ \alpha  \beta }   \bigg) \: where \: k \:  \ne \: 0}

\rm :\longmapsto\:f(x) = k\bigg( {x}^{2} - \dfrac{4}{3}x + \dfrac{1}{3}\bigg)  \: where \: k \:  \ne \: 0

\rm :\longmapsto\:f(x) =  \dfrac{k}{3} \bigg( {3x}^{2} - 4x + 1\bigg)  \: where \: k \:  \ne \: 0

Additional Information :-

\red{\rm :\longmapsto\: \alpha, \:  \beta, \:  \gamma  \: are \: zeroes \: of \:  {ax}^{3} +  {bx}^{2} + cx + d \: then}

 \boxed{ \sf{ \:  \alpha  +  \beta  +  \gamma  =  -  \:  \frac{b}{a}}}

 \boxed{ \sf{ \:  \alpha  \beta  +  \beta \gamma   +  \gamma \alpha   = \:  \frac{c}{a}}}

 \boxed{ \sf{ \:  \alpha \beta \gamma  =  -  \:  \frac{d}{a}}}

Similar questions