If alpha and beta are zeroes of the polynomial x2-8x+k such that alpha-beta=2 , then find k
Answers
Answered by
4
Answer:
15
Step-by-step explanation:
according to the quadratic equation
the sum of the roots = alpha + beta= - b/a and
product of roots = aplha x beta=c/a
But given quadratic the values of a= 1, b=-8 c= k
Alpha +beta =8
Alpha-beta=2
------—------------------
2alpha = 10
Alpha= 5
Beta =3
So alpha*beta=k
5*3=k
15=k
Answered by
2
Answer:
Here is Your answer
Step-by-step explanation:
x2-8x+k , alpha-beta=2
a= 1
b= -8
c= k
alpha-beta=2
alpha=2+beta
sum of zeroes= -b/a
alpha+beta= -b/a
(2+beta)+beta= 8/1
2+2beta=8
2(1+beta)= 8
1+beta= 4
beta= 4-1
beta= 3
alpha= 2+beta
=2+3= 5
product of zeroes= c/a
alpha*beta=c/a
5*3= k/1
15=k
Similar questions