Math, asked by vikrantgslv3, 24 days ago

If alpha and Beta are zeroes of the polynomial x² -p (x +1) + c such that (alpha + 1)( beta+1)= 0, then find the value of c.​

Answers

Answered by ItzBrainlyLords
18

Answer:

We have,

 \:

  • f(x) = x² - p(x + 1) - c = 0

 \:

  • f(x) = x² - px - (p + c) = 0

 \:

Since,

 \:

  \large \mathtt{ \alpha  \:  \:   \beta \:   \: are  \: \: zeros \:  \: of \:  \: p(x)}

 \:

So,

 \:

 \large \mathrm{ \alpha  +  \beta  = p}

 \:

 \large  :  \implies \: \mathrm{ \alpha    \beta  =  - (p + c)}

 \:

Since,

 \:

 \large \mathtt{( \alpha  + 1)( \beta  + 1) = 0}

 \:

 \large  \:  \:  \:  \:  \:  : \implies \mathtt{ \alpha  \beta  +  \alpha  +  \beta  + 1= 0}

 \:

 \large  \:  \:  \:  \:  \:  : \implies \mathtt{  - p - c +  p + 1= 0}

 \:

 \large  \:  \:  \:  \:  \:  : \implies \mathtt{ \cancel{  - p }- c +  \cancel p + 1= 0}

 \:

 \large  \:  \:  \:  \:  \:  : \implies \mathtt{  - c + 1= 0}

 \:

 \large  \boxed{ \rm \: \therefore \: c = 1}

Answered by ItzBrainlyLords
15

Answer:

We have,

 \:

  • f(x) = x² - p(x + 1) - c = 0

 \:

  • f(x) = x² - px - (p + c) = 0

 \:

Since,

 \:

  \large \mathtt{ \alpha  \:  \:   \beta \:   \: are  \: \: zeros \:  \: of \:  \: p(x)}

 \:

So,

 \:

 \large \mathrm{ \alpha  +  \beta  = p}

 \:

 \large  :  \implies \: \mathrm{ \alpha    \beta  =  - (p + c)}

 \:

Since,

 \:

 \large \mathtt{( \alpha  + 1)( \beta  + 1) = 0}

 \:

 \large  \:  \:  \:  \:  \:  : \implies \mathtt{ \alpha  \beta  +  \alpha  +  \beta  + 1= 0}

 \:

 \large  \:  \:  \:  \:  \:  : \implies \mathtt{  - p - c +  p + 1= 0}

 \:

 \large  \:  \:  \:  \:  \:  : \implies \mathtt{ \cancel{  - p }- c +  \cancel p + 1= 0}

 \:

 \large  \:  \:  \:  \:  \:  : \implies \mathtt{  - c + 1= 0}

 \:

 \large  \boxed{ \rm \: \therefore \: c = 1}

Similar questions