if alpha and beta are zeroes of the polynomials x^2-2x-15 then form a quadratic polynomial whose zeroes are2α and2β
Answers
Answered by
3
we know that , sum of zeroes=
___________________________(1)
also,
product of zeroes=
___________________________(2)
now,
from (1)
from (2),
therefore the quadratic polynomial=
✓ x²-4x-60
∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆
___________________________(1)
also,
product of zeroes=
___________________________(2)
now,
from (1)
from (2),
therefore the quadratic polynomial=
✓ x²-4x-60
∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆
madanjatin8:
Thnx
Answered by
1
Given Quadratic Equation is x^2 - 2x - 15.
Here, a = 1, b = -2, c = -15.
(i)
We know that Sum of zeroes = -b/a
⇒ α + β = -(-2)
⇒ α + β = 2.
(ii)
We know that product of zeroes = c/a
⇒ αβ = -15
Given that 2α and 2β are the zeroes of the quadratic polynomial.
Sum of zeroes:
⇒ 2α + 2β
⇒ 2(α + β)
⇒ 4
Product of zeroes:
⇒ 2α * 2β
⇒ 4(αβ)
⇒ 4(-15)
⇒ -60.
Therefore, the required quadratic polynomial is:
⇒ x^2 - (Sum of zeroes)x + Product of zeroes
⇒ x^2 - (4)x + (-60)
⇒ x^2 - 4x - 60.
Hope it helps!
Similar questions