Math, asked by madanjatin8, 1 year ago

if alpha and beta are zeroes of the polynomials x^2-2x-15 then form a quadratic polynomial whose zeroes are2α and2β

Answers

Answered by Aurora34
3
we know that , sum of zeroes=

 \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{2}{1}  = 2
___________________________(1)
also,

product of zeroes=

 \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 15}{1}  =  - 15
___________________________(2)
now,

from (1)
2 \alpha  + 2 \beta  = 2( \alpha  +  \beta )  \\  = 2(2) = 4
from (2),

2 \alpha 2 \beta  = 4 (\alpha  \beta ) \\  = 4( - 15) = -  60
therefore the quadratic polynomial=

✓ x²-4x-60

∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆




madanjatin8: Thnx
Aurora34: welcome..
Answered by siddhartharao77
1

Given Quadratic Equation is x^2 - 2x - 15.

Here, a = 1, b = -2, c = -15.

(i)

We know that Sum of zeroes = -b/a

⇒ α + β = -(-2)

⇒ α + β = 2.


(ii)

We know that product of zeroes = c/a

⇒ αβ = -15


Given that 2α and 2β are the zeroes of the quadratic polynomial.

Sum of zeroes:

⇒ 2α + 2β

⇒ 2(α + β)

⇒ 4


Product of zeroes:

⇒ 2α * 2β

⇒ 4(αβ)

⇒ 4(-15)

⇒ -60.


Therefore, the required quadratic polynomial is:

⇒ x^2 - (Sum of zeroes)x + Product of zeroes

⇒ x^2 - (4)x + (-60)

x^2 - 4x - 60.



Hope it helps!

Similar questions