if alpha and beta are zeroes of the quadratic polynomial 2x² -3x +4 then find the value of alpha/ beta + beta /alpha
Answers
EXPLANATION.
α,β are the zeroes of quadratic polynomial,
⇒ p(x) = 2x² - 3x + 4.
Sum of zeroes of quadratic polynomial.
⇒ α + β = -b/a.
⇒ α + β = -(-3)/2 = 3/2. .....(1).
Products of zeroes of quadratic polynomial.
⇒ αβ = c/a.
⇒ αβ = 4/2 = 2. .....(2).
To find ⇒ α/β + β/α.
Take L.C.M in this equation, we get.
⇒ α² + β²/αβ.
Formula of (a² + b²) = (a + b)² - 2ab.
⇒ (α + β)² - 2αβ/αβ.
Put the values in this equation, we get.
⇒ (3/2)² - 2(2)/2.
⇒ (9/4) - 4/2.
⇒ 9 - 16/4/2.
⇒ -7/4/2.
⇒ -7/4 X 1/2.
⇒ -7/8.
Value of (α/β + β/α) = -7/8.
MORE INFORMATION.
Conditions for common roots,
Let quadratic equations are,
(1) = a₁x² + b₁x + c₁ = 0.
(2) = a₂x² + b₂x + c₂ = 0.
(1) = If only one roots is common,
⇒ x = b₁c₂ - b₂c₁ / a₁b₂ - a₂b₁.
⇒ y = c₁a₂ - c₂a₁ / a₁b₂ - a₂b₁.
(2) = If both roots are common,
⇒ a₁/a₂ = b₁/b₂ = c₁/c₂.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- if alpha and beta are zeroes of the quadratic polynomial 2x² -3x +4 then find the value of alpha/ beta + beta /alpha
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
☯ Given expression
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪ p(x) = 2x² - 3x + 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪ α + β = -b/a.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪ α + β = -(-3)/2 = 3/2. .....(1).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪ αβ = c/a.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪ αβ = 4/2 = 2. .....(2).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- To find ⇒ α/β + β/α.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪ α² + β²/αβ.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪ (α + β)² - 2αβ/αβ.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪(3/2)² - 2(2)/2.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪ (9/4) - 4/2.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪ 9 - 16/4/2.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪ -7/4/2.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪-7/4 X 1/2.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ➪ -7/8.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Value of (α/β + β/α) = -7/8.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀