Math, asked by rishikasharma088, 10 months ago

if alpha and beta are zeroes of the quadratic polynomial f(x) = x2+x-2 then find a polynomial whose zeroes are 2alpha + 1 and 2beta + 1​

Answers

Answered by Anonymous
70

Solution :-

f(x) = x² + x - 2

To find zeroes equate the given polynomial to 0

x² + x - 2 = 0

Splitting the middle term

x² + 2x - x - 2 = 0

x(x + 2) - 1(x + 2) = 0

(x + 2)(x - 1) = 0

x + 2 = 0 or x - 1 = 0

x = - 2 or x = 1

Zeroes of the polynomial x² + x - 2 are - 2 , 1

So

• α = - 2

• β = 1

Finding a polyinomial whose zeroes are (2α + 1) and (2β + 1)

2α + 1

= 2(-2) + 1

= - 4 + 1

(2α + 1)= - 3

2β + 1

= 2(1) + 1

= 2 + 1

(2β + 1) = 3

The new polynomial zeroes should be - 3 and 3

Here

• α = - 3

• β = 3

Sum of zeroes = α + β = - 3 + 3 = 0

Product of zeroes = αβ = - 3(3) = - 9

Quadratic polynomial ax² + bx + c = k{x² - x(α + β) + αβ}

(Where k ≠ 0)

= k{x² - x(0) + (-9)}

= k(x² - 0 - 9)

= k(x² - 9)

When k = 1

= 1(x² - 9)

= x² - 9

Therefore the polynomial is x² - 9.

Answered by BrainlyConqueror0901
48

Answer:

{\bold{\therefore Quadratic=x^{2}-9}}

Step-by-step explantion:

{\huge{\underline{\mathfrak{SOLUTION}}}}

• In the given question information given about a quadratic whose zeroes are alpha and beta.

• We have to fimd the quadratic form by new zeroes.

 \underline \bold{Given : } \\  \implies  \alpha  \: and \:  \beta  \:are \: zeroes \: of \: f(x) \\  \implies f(x) =  {x}^{2}  + x - 2 \\  \\  \underline  \bold{To \: Find : } \\   \bold{Form \: quadratic \: by} \\   \implies( 2 \alpha  + 1) \: and \: (2 \beta  + 1)

• According to given question :

 \bold{Middle \: term \: spliting} \\  \implies  {x}^{2}  + x - 2 = 0 \\  \implies  {x}^{2}   +  2x - x - 2 = 0 \\  \implies x(x + 2) - 1(x  + 2) = 0 \\  \implies (x - 1)(x  + 2) \\    \bold{\implies  \alpha  = 1 }\\   \bold{\implies  \beta  =  - 2} \\  \\    \bold{zeroes \: of \: another \: quadratic : }\\ \bold{First \: zeroes} \\  \implies 2 \alpha  + 1 \\  \implies 2 \times (1) + 1 \\  \implies \: 3 \\  \\ \bold{Second \: zeroes} \\  \implies 2 \beta  + 1 \\  \implies 2 \times ( - 2) + 1 \\  \implies  - 3 \\  \\ \bold{sum \: of \: zeroes}  \\  \implies  \alpha  +  \beta  =  3 - 3 \\  \implies  \alpha  +  \beta  = 0 \\  \\  \bold{Product \: of \: zeroes} \\  \implies  \alpha  \beta  =  3 \times  - 3 \\  \implies  \alpha  \beta  =  - 9 \\  \\ \bold{quadratic \: from} \\   \implies  {x}^{2}  - (Sum \: of \: zeroes) x  + (Product \: of \: zeroes)  \\  \implies  {x}^{2}  - 0 \times x + ( - 9) \\    \bold{\implies  {x}^{2}  - 9 } \\  \\   \bold{\therefore Quadratic \: form =  {x}^{2}  - 9}

Similar questions