Math, asked by vartikavarshney04, 1 month ago

if alpha and beta are zeroes of the quadratic polynomial x^2+9x+20,form a quadratic polynomial whose zeroes are ( alpha +1) and (beta +1).​

Answers

Answered by suhail2070
2

Answer:

 {x}^{2}  + 7x + 12

Step-by-step explanation:

 {x}^{2}  + 9x + 20 = 0 \\  \\  \alpha   + \beta  =  - 9 \:  \:  \:  \:  \:  \:  \:  \alpha  \beta  = 20 \\  \\ s = ( \alpha +  1) + ( \beta  + 1) = ( \alpha  +  \beta ) + 2 \\  \\  =  - 9 + 2 \\  \\s  =  - 7 \\  \\  \\  \\ ( \alpha  + 1)( \beta  + 1) =  \alpha  \beta  + ( \alpha  +  \beta ) + 1 \\  \\  = 20 + ( - 9) + 1 \\  \\  = 21 - 9 \\  \\  p= 12 \\  \\ polynomial \:  \:  \:  \:  \:  {x}^{2}  - sx + p\\  \\  {x}^{2}  - ( - 7x) + 12 \\  \\  {x}^{2}  + 7x + 12 .

Similar questions