Math, asked by ganeshshelke9803, 1 year ago

If alpha and beta are zeroes of x^2+5x+5 then find the value of alpha - beta

Answers

Answered by Anonymous
2

Step-by-step explanation:

let \:  \alpha \: and \:  \beta  \: are \: the \ \\ : zeroes \: of \: the \: polynomial

given - quadratic \: equation \: is \:   \\ = x {}^{2}  + 5x + 5

we \: know \: that \:   \\  \alpha  +  \beta  =  -  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }

 \alpha  +  \beta  =   \frac{ - 5}{1}

so \\  \alpha  +  \beta   =  - 5 \\  \beta  =  - 5 -  \alpha ........eq.1

now \:  \\  \alpha  \beta  =  \frac{constant}{coefficient \: of \:  {x}^{2} }

 \alpha  \beta  =  \frac{5}{1}  \\  \alpha  \beta  = 5

putting \: the \: value \: of \:  \beta . \\  \alpha  \beta  = 5 \\  \alpha  \times { - 5 -  \alpha } = 5 \\  - 5 \alpha  -  { \alpha }^{2}  = 5 \\  { \alpha  }^{2}  + 5 \alpha - 5 = 0 \\

Similar questions