Math, asked by dhruv1581, 10 months ago

If alpha and beta are zeroes of x2 -x-1 find the value of 1/alpha +1/beata

Answers

Answered by Anonymous
7

Answer:

\large\bold\red{-1}

Step-by-step explanation:

Given,

A quadratic equation,

 {x}^{2}  - x - 1 = 0

Also,

 \alpha  \: and \:  \beta  \: are \: the \: zeroes

Therefore,

We have,

 \alpha  +  \beta  =   1

And,

 \alpha  \beta  =  - 1

Now,

We have to find,

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }

Further Simplifying,

We get,

 =  \frac{ \alpha  +  \beta }{ \alpha  \beta }

Putting the respective values,

We get,

 =  >  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{1}{ - 1}  =  - 1 \\  \\  =  > \large \boxed{ \bold{  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  - 1}}

Answered by RvChaudharY50
44

Question :---- we have to find 1/a + 1/b ?

Given :----

  • Equation = - x -1
  • roots are = a and b ...

Formula to be used :---

  • Brahmacharya Formula
  • (a²-b²) = (a+b)(a-b)

roots of Equation ax²+bx+c = 0

 \frac{ - b ±\sqrt{ {b}^{2} - 4ac } }{2a}

Here, a = 1, b = -1 , c = -1 ,

Putting values in formula now we get,

 \frac{ - ( - 1)±\sqrt{1 - 4( - 1)} }{2}  \\  \\  \frac{1± \sqrt{5} }{2}  \\  \\ so \: its \: roots \: are \:  \\  \\   \frac{ \sqrt{5}  + 1}{2} \:  \:  and \:  \:  \frac{ \sqrt{5}   -  1}{2}

Now, we have to find 1/a + 1/b :----

Putting values again we get,

 \frac{1}{ \frac{ \sqrt{5}  + 1}{2}} \:  +  \frac{1}{ \frac{ \sqrt{5}   -  1}{2}} \\  \\  \frac{2}{ \sqrt{5} + 1 }  +  \frac{2}{\sqrt{5}  -  1 } \:  \\  \\   \frac{2 \sqrt{5} - 2 + 2 \sqrt{5} + 2  }{( \sqrt{5} + 1)( \sqrt{5}  - 1) }  \\  \\  \frac{4 \sqrt{5} }{( \sqrt{5})^{2} - 1^{2}   }  \\  \\  \frac{4  \sqrt{5} }{4}  \\  \\  \implies \:  \sqrt{5}

So, our answer will be = √5 .....

(Hope it helps you)

Similar questions