Math, asked by naitikarjun, 10 months ago

if alpha and beta are zeros of a polynomial x square - 2 x-15 then from a quadratic polynomial whose zeros are 2 alpha and 2 Beta​

Answers

Answered by Anonymous
5

\sf\blue{Question}

\sf{If \ \alpha \ and \ \beta \ are \ zeroes \ of \ a}

\sf{polynomial \ x^{2}-2x-15, \ then \ form \ a \ quadratic}

\sf{polynomial \ whose \ zeroes \ are \ 2\alpha \ and \ 2\beta.}

_____________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ required \ quadratic \ polynomial \ is}

\sf{x^{2}-4x-60.}

\sf\orange{Given:}

\sf{The \ given \ polynomial \ is}

\sf{\implies{x^{2}-2x-15}}

\sf{\implies{Zeroes \ are \ \alpha \ and \ \beta.}}

\sf\pink{To \ find:}

\sf{Polynomial \ whose \ zeroes \ are \ 2\alpha \ and \ 2\beta.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ polynomial \ is}

\sf{\implies{x^{2}-2x-15}}

\sf{Here \ a=1, \ b=-2 \ and \ c=-15.}

\sf{Sum \ of \ zeroes=\frac{-b}{a}}

\sf{\therefore{\alpha+\beta=2...(1)}}

\sf{Product \ of \ zeroes=\frac{c}{a}}

\sf{\therefore{\alpha\beta=-15...(2)}}

__________________________________

\sf{Let \ M \ and \ N \ be \ the \ zeroes \ of \ required}

\sf{polynomial.}

\sf{\therefore{M=2\alpha \ and \ N=2\beta}}

\sf{M+N=2\alpha+2\beta}

\sf{\therefore{M+N=2(\alpha+\beta)}}

\sf{...from \ (1)}

\sf{\therefore{M+N=2(2)}}

\sf{\therefore{M+N=4...(3)}}

\sf{M\times \ N=2\alpha\times2\beta}

\sf{\therefore{M\times \ N=4\alpha\beta}}

\sf{...from \ (2)}

\sf{\therefore{M\times \ N=4(-15)}}

\sf{\therefore{M\times \ N=-60...(4)}}

\sf{Quadratic \ polynomial \ is}

\sf{\implies{x^{2}-(Sum \ of \ zeroes)x+(Product \ of \ zeroes)}}

\sf{\implies{x^{2}-(M+N)x+(M\times \ N)}}

\sf{...from \ (3) \ and \ (4)}

\sf{\implies{x^{2}-4x-60}}

\sf\purple{\tt{\therefore{The \ required \ quadratic \ polynomial \ is}}}

\sf\purple{\tt{x^{2}-4x-60.}}

Similar questions