Math, asked by achu3032, 11 months ago

if alpha and beta are zeros of a quadratic polynomial 4X square + 4 x + 1 then form a quadratic polynomial whose zeros are 2 alpha and 2 Beta​

Answers

Answered by Anonymous
151

\bold{\underline{\underline{\mathtt{\green{\bf{QUESTION:-}}}}}}.

  • if alpha and beta are zeros of a quadratic polynomial (4X² + 4 x + 1 )then form a quadratic polynomial whose zeros are 2 alpha and 2 Beta

_____________________

\bold{\underline{\underline{\mathtt{\green{\bf{SOLUTION:-}}}}}}.

\bold{\underline{\underline{\:GIVEN\:HERE:-}}}

  • equation is 4x² + 4x +1 = 0

  • alpha and beta are zeroes .

____________________

\bold{\underline{\underline{\:FIND:HERE:-}}}

  • Find quadratic equation whose zeros are (2alpha ) and (2beta) .

______________________

\bold{\underline{\underline{\:EXPLANATION:-}}}

we know,

\bold{\red{\boxed{\boxed{\:Sum\:of\:zeros\:=\frac{-(coefficient\:of\:x)}{(Coefficient\:of\:x^2)}}}}}....(1)

\implies\:(\alpha\:+\beta)\:=\cancel{\frac{-(4)}{4}}

\implies\:(\alpha\:+\beta)\:=\:-1....(2)

____________________

Again,

\bold{\red{\boxed{\boxed{\:Product\:of\:zeroes\:=\frac{(Constant\:part)}{(Coefficient\:of\:x^2)}}}}}

\implies\:(\alpha\beta)\:=\frac{1}{4}...(3)

_____________________

Now, we using identity

\bold{\red{\boxed{\boxed{\:(\alpha\:-\beta)\:=\sqrt{(\alpha\:+\beta)^2-4\alpha\beta}}}}}

keep value by equation ,

\implies\:(\alpha\:-\beta)\:=\sqrt{(-1)^2-\cancel{4}(\frac{1}{\cancel{4}})}

\implies\:(\alpha)\:-\beta)\:=\sqrt{(1-1)}

\implies\:(\alpha\:-\beta)\:=\:0....(4)

_____________________

Addition of equation of (2) and (4)

we get,

\implies\:(2\alpha)\:=\:-1

\bold{\boxed{\boxed{\alpha\:=\frac{(-1)}{2}}}}....(5)

______________________

Now, keep value in (4) by (5).

\implies\:(\frac{-1}{2}\:-\beta)\:=\:0

\bold{\boxed{\boxed{\:(\beta)\:=\frac{(-1)}{2}}}}....(6)

______________________

Finally we found here ,

  • \alpha\:=\frac{-1}{2}

  • \beta\:=\frac{-1}{2}

_____________________

Now, we going to calculate quadratic equation , whose zeroes are \:2\alpha\:and\:2\beta.

Let,

  • P and Q are zeroes of new quadratic equation

So,

First zeros will be ( P )

  • \:P\:=\:2\alpha

  • \:P\:=\:\cancel{2}\times\frac{-1}{\cancel{2}}

  • \:P\:=\:-1....(7)

And,

Second zeroes will be (Q)

  • \:Q\:=\:2\beta

  • \:Q\:=\:\cancel{2}\times\frac{-1}{\cancel{2}}

  • \:Q\:=\:-1. ...(8)

______________________

Now , we calculate

Sum Of P and Q :-

  • (P+Q)=(-1)+(-1)= -2.

Product of P and Q :-

  • (PQ)=(-1)(-1)=(1).

_____________________

\bold{\underline{\underline{\mathtt{\green{\bf{\:Formula\:Of\:Quadratic\:Equation:-}}}}}}.

\bold{\red{\boxed{\boxed{\:X^2-X(P+Q)+PQ\:=\:0}}}}

\implies\:X^2-X(-2)+\:1\:=\:0

So, Required. Quadratic equation

\bold{\red{\boxed{\boxed{\:(X^2+2X+1)\:=\:0}}}}

____________________

Answered by ADITHYANB
0

Answer:

please make my answer brainliest

Attachments:
Similar questions