Math, asked by rushishah, 1 year ago

if alpha and beta are zeros of given polynomial f x is equals to x square - 3 bracket X + 2 bracket minus C then find the value of alpha + 2 and beta + 2

Answers

Answered by sivaprasath
11

Answer:

Step-by-step explanation:

Given :

α and β are the zeroes of the polynomial,

f(x) = x² - 3(x + 2) - c,. f(x) = 0,

To Find :

The value of (α + 2) and (β + 2)

Solution :

We know that, quadratic equations of the form,

ax² + bx + c = 0

have zeroes α and β in the form,

x² - (α + β) x + αβ = 0,.

\alpha +\beta =\frac{-b}{a}

\alpha\beta= \frac{c}{a}

Hence,

By expanding the given equation,

x² - 3(x + 2) - c = 0

x² - 3x - 6 - c = 0

Here,

a = 1 , b = -3 , c = - 6 - c

Hence,

by applying the formula,

\alpha +\beta=\frac{-b}{a}

\alpha\beta=\frac{c}{a}

\alpha+\beta=\frac{-(-3)}{1} = 3

⇒ α + β = 3 ....(1)

\alpha\beta=\frac{-6-c}{1} = - 6 - c = - (c + 6)

⇒ αβ = - ( c + 6 )

By solving we get,

α = \frac{3 +\sqrt{4c + 33} }{2}

β = \frac{3 -\sqrt{4c + 33} }{2}

⇒ α + 2 = \frac{3 +\sqrt{4c + 33} }{2} + 2 = \frac{7 +\sqrt{4c + 33} }{2}

⇒ β + 2 =  \frac{3 -\sqrt{4c + 33} }{2} + 2 = \frac{7 -\sqrt{4c + 33} }{2}


Swarup1998: Great answer, bro! :)
Similar questions