Math, asked by ananyachawla2906, 1 month ago

If alpha and beta are zeros of polynomial x^2-x-2 find the equation where zeroes are 2 alpha+1 and 2 beta + 1

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that

\red{\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \:  {x}^{2} - x - 2}

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\: \alpha  +  \beta  =  -  \: \dfrac{( - 1)}{1}  = 1

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  \beta  = \dfrac{ - 2}{1}  =  - 2

Now,

We have to find a quadratic polynomial whose zeroes are

\rm :\longmapsto\:2 \alpha  + 1 \: and \: 2 \beta  + 1

Let Consider,

Sum of the roots, S

\rm \:  =  \:  \: \:2 \alpha  + 1 \:  +  \: 2 \beta  + 1

\rm \:  =  \:  \: 2( \alpha  +  \beta ) + 2

\rm \:  =  \:  \: 2( 1 ) + 2

\rm \:  =  \:  \: 2+ 2

\rm \:  =  \:  \: 4

Now, Consider Product of the roots, P

\rm \:  =  \:  \: (2 \alpha   + 1)(2\beta  + 1)

\rm \:  =  \:  \: 4 \alpha  \beta  + 2 \alpha  + 2 \beta  + 1

\rm \:  =  \:  \: 4 \alpha  \beta  + 2( \alpha  + \beta)  + 1

\rm \:  =  \:  \: 4( - 2) + 2 + 1

\rm \:  =  \:  \:  - 8 + 3

\rm \:  =  \:  \:  - 5

So, The required Quadratic polynomial is

\red{\rm :\longmapsto\:f(x) = k\bigg( {x}^{2} - Sx +  P \bigg), \: where \: k \ne \: 0}

So, on substituting the values of S and P, we get

{\bf :\longmapsto\:f(x) = k\bigg( {x}^{2} - 4x  - 5 \bigg), \: where \: k \ne \: 0}

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha   + \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta  +   \beta  \gamma +  \gamma  \alpha   =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions