if alpha and beta are zeros of polynomial x square - 5 x + c and alpha-beta=1 find c
Answers
Answered by
2
x2-5x+c
Here, a=1, b=-5 and c=k
Now, α+ β = -b/a= -(-5)/1= 5
α*β = c/a= k/7= k
Now,α - β =1
Squaring both sides, we get,
(α - β)2=12
⇒ α2 + β2 - 2αβ = 1
⇒ (α2 + β2 + 2αβ) - 4αβ = 1
⇒ (α +β)2 -4αβ =1
⇒ (5)2-4k=1
⇒ -4k= 7-25
⇒ -4k= -24
⇒ k=6 So the value of c is 6.
Here, a=1, b=-5 and c=k
Now, α+ β = -b/a= -(-5)/1= 5
α*β = c/a= k/7= k
Now,α - β =1
Squaring both sides, we get,
(α - β)2=12
⇒ α2 + β2 - 2αβ = 1
⇒ (α2 + β2 + 2αβ) - 4αβ = 1
⇒ (α +β)2 -4αβ =1
⇒ (5)2-4k=1
⇒ -4k= 7-25
⇒ -4k= -24
⇒ k=6 So the value of c is 6.
Answered by
3
Step-by-step explanation:
Given if αβ are zeroes of quadratic polynomial
f(x)=x
2
−5x+k (1)
& α−β=1
& α−β=5 & αβ = k
we know (α+β)
2
−(α−β)
2
=4αβ
25−1=4αβ
αβ=
4
24 =6
∴ value of k = αβ=6.
Similar questions