Math, asked by anmol10024, 10 months ago


If alpha and beta
are zeros of polynomial
x² - 2x+3 Find polynomial with
zeros
alpha-1/alpha+1
and beta-1/beta+1

Answers

Answered by Anonymous
11

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

If α and β are the zeroes of quadratic polynomial x² - 2x + 3

\bf{\red{\underline{\bf{To\:find\::}}}}

The polynomial with zeroes α - 1/α + 1 and β - 1/β + 1.

\bf{\red{\underline{\bf{Explanation\::}}}}

We have p(x) = x² - 2x + 3

As we know that given polynomial compared with ax² + bx + c

  • a = 1
  • b = -2
  • c = 3

\underline{\orange{\mathcal{SUM\:OF\:THE\:ZEROES\::}}}

\mapsto\sf{\alpha +\beta =\dfrac{-b}{a} =\dfrac{Coefficient\:of\:x}{Coefficient\:of\:(x)^{2} } }\\\\\\\mapsto\sf{\alpha +\beta =\dfrac{-(-2)}{1} }\\\\\\\mapsto\bf{\alpha +\beta =2}}

\underline{\orange{\mathcal{PRODUCT\:OF\:THE\:ZEROES\::}}}

\mapsto\sf{\alpha \times \beta =\dfrac{c}{a} =\dfrac{Constant\:term}{Coefficient\:of\:(x)^{2} } }\\\\\\\mapsto\sf{\alpha \times \beta =\dfrac{3}{1} }\\\\\\\mapsto\bf{\alpha \times \beta =3}}

A/q

\dag\:\underline{\underline{\bf{Sum\:of\:zeroes\::}}}}}}

\longrightarrow\tt{\dfrac{\alpha -1}{\alpha+1 } +\dfrac{\beta -1}{\beta+1 } }\\\\\\\longrightarrow\tt{\dfrac{(\alpha -1)(\beta+1)+(\beta -1)(\alpha+1)  }{(a+1)(\beta+1) } }\\\\\\\longrightarrow\tt{\dfrac{\alpha\beta \cancel{+\alpha -\beta }  -1+\alpha \beta \cancel{+\beta -\alpha}  -1}{\alpha\beta +\alpha +\beta +1 } }\\\\\\\longrightarrow\tt{\dfrac{2\alpha \beta-2 }{\alpha\beta +\alpha +\beta +1 } }\\\\\\\longrightarrow\tt{\dfrac{2(3)-2}{3+2+1} }\\\\\\\longrightarrow\tt{\dfrac{6-2}{6} }\\

\longrightarrow\tt{\cancel{\dfrac{4}{6} }}\\\\\\\longrightarrow\tt{\blue{\dfrac{2}{3} }}

\dag\:\underline{\underline{\bf{Product\:of\:zeroes\::}}}}}}

\longrightarrow\tt{\bigg(\dfrac{\alpha-1 }{\alpha+1 } \bigg)\bigg(\dfrac{\beta -1}{\beta+1 } \bigg)}\\\\\\\longrightarrow\tt{\dfrac{\alpha \beta-\alpha  -\beta+1 }{\alpha\beta +\alpha  +\beta+1 } }\\\\\\\longrightarrow\tt{\dfrac{3-(2)+1}{3+2+1} }\\\\\\\longrightarrow\tt{\dfrac{1+1}{6} }\\\\\\\longrightarrow\tt{\cancel{\dfrac{2}{6} }}\\\\\\\longrightarrow\tt{\blue{\dfrac{1}{3} }}

Now;

\underline{\underline{\bf{The\:required\;polynomial\::}}}}}}

\longrightarrow\sf{x^{2} -(sum\:of\:zeroes)x+(product\:of\:zeroes)}\\\\\longrightarrow\sf{x^{2} -\bigg(\dfrac{2}{3}\bigg) x+\bigg(\dfrac{1}{3}\bigg) =0}\\\\\\\longrightarrow\sf{x^{2} -\dfrac{2}{3}x+\dfrac{1}{3} =0}\\\\\\\longrightarrow\sf{\blue{3x^{2} -2x+1=0}}

Answered by silentlover45
1

Answer:

\implies 3x² - 2x + 1 = 0

\large\underline\mathrm{Given:-}

If   \: \alpha   \: \:  and  \:  \beta  are \:   \: the  \: \:  zeroes  \:  \: of  \:  \: quadratic  \: \: polynomial \: x {}^{2}  - 2x \:  + \:  2

The  \: polynomial  \: with \:  zeroes \:  a  \:  \:  \alpha  -( 1 \div  \alpha ) + 1 \: amd \:  \beta  -  \: (1 \div  \beta ) + 1

\large\underline\mathrm{To \: find}

Explanation:

  • We have p(x) = x² - 2x + 3
  • The given polynomial compared with ax² + bx + c

\implies a = 1

\implies b = -2

\implies c = 3

Sum of the zeroes:

 \alpha  +  \beta  =  - b \div a \\  \alpha  +  \beta  =  - ( - 2) \div 1 \\  \alpha  +  \beta  = 2

Product of the zeroes:

 \alpha   \times   \beta  = c \div a \\  \alpha   \times  \beta  = 3 \div 1 \\  \alpha  \times  \beta  = 3

Sum of zeroes:

( \alpha  - 1 \: )( \:  \alpha  + 1 \: ) + ( \:  \beta  - 1 \: )( \beta  + 1) \\ ( \:  \alpha  - 1 \: )( \:  \beta  + 1 \: ) + ( \beta  + 1 \: )( \alpha  + 1 \: ) \div ( \:  \alpha  + 1 \: )( \beta  \:  + 1 \: ) \\  (\alpha  \beta  +  \alpha  +  \beta  - 1 +  \alpha  \beta  +  \beta  -  \alpha  - 1) \div  \alpha  \beta  +  \alpha  +  \beta  + 1 \\ (2 \alpha  \beta  - 2) \div (3 + 2 + 1) \\ (6   - 2) \div 6 \\ 4 \div 6 \\ 2 \div 3

Product of zeroes:

( \alpha  -  1  \div  \alpha  + 1)( \beta  - 1 \div  \beta  + 1) \\  (\alpha  \beta  -  \alpha  -  \beta  + 1) \div ( \alpha  \beta  +  \alpha  +  \beta  + 1) \\ (3 - 2 + 1) \div (3 + 2 + 1) \\ (1 + 1) \div 6 \\ 2 \div 6 \\ 1 \div 3

Now,

\implies x² - (2/3)x + (1/3) = 0

\implies x² - 2x/3 + 1/3 = 0

\implies 3x² - 2x + 1 = 0

Similar questions